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1 Lecture 1: Overview and beginning of CS70 Review

1.1 Motivation

1. Uncertainty is all around us!

2. This course is about formalizing how to predict things.

3. Actually has origins in gambling

4. First need to developmodel (requires understanding of the problem as an experiment), and then need
to solve (using combinatorics, calculus, common sense, etc). As engineers, we need to do both, but
often it is (perhaps unexpectedly) the modelling that is more di�cult than the solving.

5. Last but certainly not least (for many of you), foundational for ML/AI.

1.2 Content

De�nition 1.1. A Sample Space 
 of an experiment is the set of all outcomes of the experiment.
The outcomes must bemutually exclusive(ME) and collectively exhaustive(CE)

Example 1.2. Toss two fair coins. Then we have 
 = f HH; HT; TH; TT g. Can check that these
outcomes are mutually exclusive and collectively exhaustive.

De�nition 1.3. An Event is simply an allowable subset of 
.

Example 1.4. In Ex 1.2 an event would be getting at least 1 Head

De�nition 1.5. A Probability Space (
 ; F ; P) is a mathematical construct that allows us to model
these "experiments". HereF denotes the set of all possible events, where each event is a set containing
0 or more base outcomes (for discrete 
 this is simply the power set of 
). And P : F 7! [0; 1] is a
function assigning probabilities to each event.

All of Probability Theory rests on just 3 (2.5?) axioms (Kolmogorov):

1. Pr (A) � 0 for all A � 


2. Pr (
) = 1

3. Pr (A1 [ A2 [ :::) = Pr (A1) + Pr (A2) + : : : for all disjoint A1; A2; : : : . This can be �nite or we can
take n ! 1 and this becomescountable additivity.

We immediately have the following fundamental facts:

1. Pr (Ac) = 1 � Pr (A)

2. Pr (A [ B ) = Pr (A) + Pr (B ) � Pr (A \ B )

3. Union bound: Pr (
S n

i =1 A i ) �
P n

i =1 Pr (A i )

4. Inclusion-Exclusion:

Pr

 
n[

i =1

A i

!

=
X

Pr (A i ) �
X

i<j

Pr (A i \ A j ) +
X

i<j<k

Pr (A i \ A j \ Ak ) � : : :

In the discrete setting, just from the axioms, we have thatPr (A) =
P

! 2 A Pr (! ). If our sample space is

uniform, then we have that Pr (A) = jA j
j 
 j
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1.3 Conditional Probability

De�nition 1.6. In general, we use the notationPr (AjB ) = the probability that event A has occurred
given that we know that B has occurred.

Proposition 1.7 (Bayes Rule).

Pr (AjB ) =
Pr (A \ B )

Pr (B )

" B is the new
 "

Example 1.8. We roll two six sided die, and observe that the sum of the two die is 11. What is is
the probability that the �rst die was a 6? Here let A = event of a 6 on the �rst die and B = event
of sum being 11.

Pr (AjB ) =
Pr (A \ B )

Pr (B )
=

Pr (f 6; 5g)
Pr (f 6; 5g) + Pr (f 5; 6g)

=
1
2

Bayes Rule directly extends to theProduct Rule , which says that

Pr (A1 \ A2 \ ::: \ An ) = Pr (A1) Pr (A2jA1) Pr (A3jA1 \ A2) � � � Pr (An jA1 \ ::: \ An � 1)

We also can develop theLaw of Total Probability , which says that for mutually exclusive and collec-
tively exhaustive events A1; :::; An , we have that

Pr (B ) = Pr (A1 \ B ) + ::: + Pr (An \ B ) =
nX

i =1

Pr (A i ) Pr (B jA i )

This can be easily visualized via the following picture:

In the picture, we partition the sample space indicated by the whole box into the mutually exclusive and
collectively exhaustive eventsA1; A2; A3; A4; A5. Conditioned on each of these, there is some probability
that B occurs, and so we can �nd the total probability that B occurs by considering each case separately.
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2 Lecture 2: Independence, Bayes Rule, Discrete Random Variables

We will begin with a cool example.

Example 2.1 (Birthday Paradox). Want to estimate Pr (at least two people in a group of size n share
the same birthday). First we note that j
 j = kn = 365n . The problem is that this event is a bit
complicated. So we will consider the complement:Ac = \no two people share a birthday" Then,
since the distributions are uniform, we have

Pr (Ac) =
jAcj
j
 j

=
365� 364� � � � � (365� n + 1)

365n

= 1(1 �
1
k

)(1 �
2
k

) � � � (1 �
n � 1

k
)

� e� 1=k e� 2=k � � � e� (n � 1)=k

= e� 1
k (1+ ��� + n � 1)

� e� n 2 =k :

So then we have that
Pr (A) = 1 � Pr (Ac) � 1 � e� n 2 =k :

It turns out, for k = 365 and n = 23, we get a roughly 50% chance of two people having the same
birthday!

2.1 Bayes Theorem

Bayes Theorem was motivated by disease testing.

Example 2.2 (False Positive Quiz). We are testing for a rare disease, and our test has the following
properties:

� If person has disease, we detect with 0.95 probability.

� If person doesn't have the disease, test is negative wp 0.95

� Random person has disease wp 0.001

Let A be the event that the person has the disease, andB be the event that the person tests
positive. We would like to calculate Pr (AjB ). We have via Bayes Theorem that

Pr (AjB ) =
Pr (B jA) Pr (A)

Pr (B jA) Pr (A) + Pr (B jAc) Pr (Ac)

=
(0:95)(0:001)

(0:95)(0:001) + (0:999)(0:05)
= 0 :0187

Most doctors, when asked, said this probability was 95%. The main contributing factor here is
the fact that the prior Pr (A) = 0 :001 is so small. If we change the scenario and havePr (A) = 0 :01,
then our new probability Pr (AjB ) = 0 :16, so we should be more worried. Note that the doctor would
actually be correct if the disease were present in 1/2 of the population.

De�nition 2.3. Two events areIndependent if the occurrence of one provides no information about
the occurrence of the other. i.e.

Pr (AjB ) = Pr (A)

6



which is equivalent to saying
Pr (A \ B ) = Pr (A)P r (B )

Extending this, a collection of eventsS are independent if

Pr (
\

i 2 S

A i ) =
Y

i 2 S

Pr (A i )

Remark 2.4. Pairwise independence does not imply joint independence.

Remark 2.5. Being disjoint does not imply independence, nor does the implication hold in the other
direction. If A; B are disjoint, then Pr (A \ B ) = 0, and independence tells us that Pr (A \ B ) =
Pr (A) Pr (B ), which would tell us for two events to be both disjoint and independent, at least one
of the two events must have zero probability of occurring. Note that this tells us that base outcomes
of our probability space, which are all disjoint by de�nition, and all have nonzero probability by
de�nition, must not be independent.

De�nition 2.6. Conditional Independence is when Pr (A \ B jC) = Pr (AjC) Pr (B jC). Then we
say that A and B are \conditionally independent given C".

Example 2.7. Say we have two coins, one with tails on both sides, one with heads on both sides. We
pick one up at random, and we 
ip it twice. We also let H i be the event that that i th 
ip is a heads.
Note immediately that H1 and H2 are decidedly not independent. Now we denoteA as the event of
us picking the two-headed coin. Then we have thatPr (H1 \ H2jA) = Pr (H1jA) Pr (H2jA \ H1) =
Pr (H1jA) Pr (H2jA). So this is an example of events that are conditionally independent but not
themselves independent.

Exercise 2.8. Construct an example of RVs that are independent, but not conditionally independent.

Example 2.9. I roll two fair die. What is the probability I see a 6 before I see a 7? Let's use
independence to attack this problem.

Lets condition on the �rst roll. Let S be the event that the �rst roll of the two die is a 6, and T
be the event that the �rst roll is a 7. Let E be the event we are looking for, that we see a 6 before
we see a 7. Then we have

Pr (E) = Pr (E jS)P r (S) + Pr (E jT)P r (T) + Pr (E j(S [ T)c) Pr ((S [ T)c)

= 1 � 5=36 + 0 � 6=36 + Pr (E) � 25=36

=) Pr (E) = 5 =11

2.2 Discrete Random Variables

De�nition 2.10. Random Variables associate a real number with each possible outcome. They are
inherently a function f : 
 ! R.
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Why is this useful? If we are stuck with only events, we have no numbers to work with, we can't calculate
means and variances and we cannot do statistics. Heads and tails only gets us so far, but if we assign the
value 0 or 1 now we can domath.

Example 2.11 (Some random variables). 1. The RV X has valuei if the throw of a die is i .

2. X 2 is a perfectly valid random variable.

Consider rolling two four-sided dice. Then M k is the event that the min is k, whereas we can sayM
is the random variable that is equal to the value of the minimum of the two die. By enumerating all the
possible values of the two die roll (which are all equal probability), we can see thatM = 1 wp 7/16, M = 2
wp 5/16, M = 3 wp 3/16, and M = 4 wp 1/16. This mapping from values of a RV to probabilities for
discrete random variables is known as aprobability mass function or PMF , and in a way it de�nes the
random variable.

There are nigh on an uncountable number of notations you will see for PMFs, but I'll just brie
y go over
the one's you'll see in these notes. We let the PMF of a RVX be PX , and we sayPX (x) = Pr (f X = xg),
often simply denoted Pr (X = x). We also have to have (in order for our PMF to be valid), that

X

x

PX (x) = 1 ; P(X 2 S) =
X

x 2 S

PX (x)

Example 2.12 (chess). Imagine Vishy Anand is playing Kasparov in chess (when they are at the
height of their power). They play 10 games, and for each individual game, the probability Anand
wins is 0.3, the probability that Kasparov wins is 0.4, and then probability that they draw is 0.3. The
�rst to win a game wins the match, and if there are ten consecutive draws then the match is drawn.
Question: what is the PMF of the duration of the match L? We have that

PL (l ) =

(
0:39 l = 10
0:3l � 1 � 0:7 1 � l � 9

Question: What is the probability that Anand wins the match?

Pr (A wins the match) =
9X

l =0

(0:3)l (0:3)

which can be simpli�ed using the formula for a geometric series.
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3 Lecture 3: Expectation, Uniform, Geometric, Binomial and Poisson
Distributions

Agenda:

1. Recap of Discrete RVs and Probability Mass Functions (PMF)

2. Expectation

3. Some popular Discrete RVs

4. Variance

As a reminder, discrete random variables (DRVs) associate a real number with each possible outcome,
so they are really just functions from 
 ! R. The distribution or PMF is the collection of valuesf a; PX (a) :
a 2 Ag where A is the set of all possible values taken by the RVX

Remark 3.1 (Functions of RVs are still RVs). Let Y = g(X ). Then we have

PY (y) =
X

f x jg(x )= yg

PX (x)

An RV itself is a function, and the function of a function is still a function!

Example 3.2. Let Y = jX j, where X is uniformly distributed between � 2 and 2. So thenPX (x) =
1=5; 8x 2 f� 2; � 1; 0; 1; 2g. Then PY (y) = 2 =5 for y = 1 ; 2 and PY (y) = 1 =5 for y = 0.

3.1 Expectation

De�nition 3.3. We have the expectation of a discrete RV X that takes on values in a setX is

E[X ] =
X

x 2X

xPX (x)

Alternatively, we also have E[X ] =
P

! 2 
 X (! )P(! )

Theorem 3.4 (Expectations of Functions of RVs). Let Y = g(X ). Then we have that

E[Y ] =
X

y

y Pr (Y = y) =
X

x

g(x) Pr (X = x)

Note that there are no restrictions on the function g, so it holds for any function.

Proof. We start by noting
Pr (Y = y) =

X

x :g(x )= y

Pr (X = x)
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Then, we have that

E[Y ] =
X

y

y Pr (Y = y) =
X

y

y
X

x :g(x )= y

Pr (X = x)

=
X

y

X

x :g(x )= y

g(x) Pr (X = x)

=
X

x

g(x) Pr (X = x):

We can then use the above theorem to prove linearity of expectations!

Theorem 3.5. (Linearity of Expectation)
We have

E[X + Y ] = E[X ] + E[Y ]

for arbitrary X and Y that are de�ned on the same probability space. This of course generalizes (via
induction) to more than just two RVs.

Proof. We let g(X; Y ) = X + Y . Then, according to the above theorem, we have that

E[X + Y ] =
X

x;y

(x + y) Pr (X = x; Y = y)

=
X

x;y

x Pr (X = x; Y = y) +
X

x;y

y Pr (X = x; Y = y)

=
X

x

X

y

x Pr (X = x; Y = y) +
X

y

X

x

y Pr (X = x; Y = y)

=
X

x

x
X

y

Pr (X = x; Y = y) +
X

y

y
X

x

Pr (X = x; Y = y)

=
X

x

x Pr (X = x) +
X

y

y Pr (Y = y) (law of total probability)

= E[X ] + E[Y ]:

The extremely important property of linearity of expectations, which you may already be familiar with,
is that this holds even if X and Y are dependent on each other. The fact that we don't need any assumptions
about independence is what makes the linearity property of expectation so powerful and useful!

Example 3.6. The average of the sum of two rolls of the diceX 1; X 2 is

E[X ] = E[X 1 + X 2] = E[X 1] + E[X 2] = 7

Example 3.7. Suppose Prof Ramchandran collects homeworks fromn students, shu�es them
randomly, and then hands them back (at random). What is the expected number of students who
get their homework back? More formally, what is the expected number of �xed points in a random
permutation of n points?

Solution: Let X i be the indicator RV that equals 1 if student i gets their homework back,
and equals 0 otherwise. Then we can note that the number of students who get their homework back
X , is exactly equal to X 1 + ::: + X n . So then

E[X ] = E[X 1 + ::: + X n ] =
nX

i =1

E[X i ] =
X

i = 1 n Pr (X i = 1) = n �
1
n

= 1

10



Remarkably, we see that the expected number of �xed points is always 1, regardless of how large or
small n is. This technique of de�ning indicator RVs and applying linearity of expectation is extremely
powerful and will come up over and over again in this course. When in doubt, come up with some
indicators!

Remark 3.8. The X i 's in the previous example arenot independent (exercise: why?), yet we can
still apply linearity of expectation!

De�nition 3.9. We de�ne the Variance of a RV X , sometimes denoted� 2
X is

Var (X ) = E[(X � E[X ])2]

And furthermore the standard deviation is

� X =
p

Var (X )

Exercise 3.10. From the de�nition of variance derive that

Var (X ) = E[X 2] � E[X ]2

Theorem 3.11 (Discrete Tail Sum Formula). The (discrete) tail sum formula that we know and love
for positive valued random variables is

E[X ] =
X

x

x Pr (X = x) =
1X

k=1

Pr (X � k)

There is a derivation that just does some tricks with algebra inside summations, but �rst I will give a
hopefully more intuitive picture of what is going on here.

Consider the above picture. The regular formula for expectation,E[X ] =
P 1

k=1 k Pr (X = k), is equivalent
to calculating the area of the above graph horizontally, while the tail sum formula

P 1
k=1 Pr (X � k), is

equivalent to calculating the area of the above graph vertically.

Proof. Now we give the (less intuitive) algebraic proof:

E[X ] :=
1X

x =1

x Pr (X = x)

notice here that x Pr (X = x) =
P x

k=1 Pr (X = x), so then we have:

11



E[X ] =
1X

x =1

xX

k=1

Pr (X = x)

=
1X

k=1

1X

x = k

Pr (X = x)

=
1X

k=1

Pr (X � k)

Exercise 3.12. Convince yourself that
P 1

x =1

P x
k=1 Pr (X = x) =

P 1
k=1

P 1
x = k Pr (X = x). It may

help to draw a graph of an arbitrary distribution, with Pr (X = x) as the y-axis andx as the x-axis.

3.2 Some Popular Discrete Random Variables

De�nition 3.13 (Discrete Uniform RV). The discrete uniform distribution over [n] = f 1; :::; ng has
PMF:

PX (k) =
1
n

; 8k 2 [n]

We can easily see that for uniformX , we haveE[X ] = n +1
2 .

De�nition 3.14 (Bernoulli ("coin 
ip") RV) . The Bernoulli(p) RV takes on the value 1 with probability
p, and 0 with probability 1 � p. Explicitly:

PX (k) =

(
p if k = 1
1 � p if k = 0

And we can easily calculate thatE[X ] = p. We also have

Var (X ) = E[X 2] � E[X ]2 = p � p2 = p(1 � p)

De�nition 3.15 (Indicator RV). An indicator RV of an eventA takes on the value of 1 ifA happens/is
true and 0 otherwise:

X = f 1gA = 1A =

(
1 A is true
0 else

We can note then that
E[1A ] =

X

x

x Pr (X = x) = Pr (A)

De�nition 3.16 (Binomial Random Variable). If X � Bin (n; p) then we de�ne the PMF (probability
mass function) as:

PX (k) = Pr (X = k) =
�

n
k

�
pk (1 � p)n � k

The Binomial distribution is by de�nition also just the sum of n iid Bernoulli variables with parameter
p. X =

P n
i =1 B i where B i � Ber (p)

12



It is not too di�cult to calculate the expectation and variance of a binomial random variable, precisely
because it can be represented as the sum ofn i.i.d. Bernoullis. We have that we can use linearity of
expectations to calculate the expectation ofX � Bin (n; p). We have

E[X ] = E[
nX

i =1

B i ] =
nX

i =1

E[B i ] =
nX

i =1

p = np

Example 3.17. Let Y = aX + b. Then we have that

Var (Y ) = Var (aX + b) = E[(aX + b) � E[aX + b]]

= E[((aX + b) � (a E[X ] + b))2]

= E[(aX � a E[X ])2]

= a2 E[(X � E[X ])2]

= a2 Var (X )

Note that adding a constant does not a�ect the variance, nor should it intuitively, as we are simply
shifting where the variable occurs and not a�ecting the spread of the variable at all. Multiplying by
a constant, however, should and does a�ect the spread and therefore the variance of an RV.

De�nition 3.18 (Geometric Random Variable). A geometric random variable counts the time until the
�rst success. We have that the PMF of a geometric random variable with parameterp (the probability
of success isp) is as follows:

Pr (X = k) = (1 � p)k � 1p

The above formula makes sense because we need the �rstk� 1 events to be failures, which happen with
probability 1 � p, and then we need thekth event to be a success, which happens with probabilityp.
Also intuitively, if we want to calculate the probability Pr (X > k ), then we need the �rst k events to
all be failures, and it does not matter at all what happens after that. Therefore,Pr (X > k ) = (1 � p)k ,
which tells us that the CDF of a geometric RV is Pr (X � k) = 1 � Pr (X > k ) = 1 � (1 � p)k . As a
sanity check, we can di�erentiate the CDF and �nd that it does indeed equal the PDF.

We can also calculate more easily the expectation of geometric random variable using the tail sum formula.
We have that

E[X ] =
1X

i =1

Pr (X � k) =
1X

i =1

(1 � p)k � 1 =
1
p

Where the last step follows from the formula for in�nite geometric series.

13



4 Lecture 4: (Co)variance, Correlation, Conditional / Iterated Expec-
tation, Law of Total Variance

Agenda

1. Recap of expectation, their properties, and popular RVs

2. Memoryless property of Geometric(p) RVs

3. Conditional RV and Iterated Expectation

4. Covariance

4.1 Geometric RV and Properties, Poisson RV

Example 4.1 (Coupon Collector Problem). Imagine we haveN balls of di�erent colors, and we sample
with replacement. What is the expected number of trials before we see all of the colors? To address
this problem, we start by de�ning a few variables. Let Cr be the number of samplings required
until we see at leastr distinct colors. Then we know that C1 = 1 and is in fact not at all random.
We further de�ne X i as the number of samplings required to seei distinct colors given that we
have already seeni � 1 colors. We note here also that eachX i is a geometric random variable with
parameter (probability of success)p = N � i +1

N We also note that we have

CN =
NX

i =1

X i

Then,

E[CN ] =
NX

i =1

E[X i ] = 1 +
N

N � 1
+

N
N � 2

+ ::: + N � N logN

De�nition 4.2 (Poisson Random Variable). We de�ne X � Pois(� ) with the following PMF:

Pr (X = k) =
� k e� �

k!

In general, the parameter � describes arate, i.e. the number of customers entering the store in a hour.
We can calculate forX � Pois(� ) the expectation:

E[X ] =
1X

k=0

k
� k e� �

k!
=

1X

k=1

k
� k e� �

k!
= �e � �

1X

k=1

� k � 1

(k � 1)!
= �e � � e� = �:

Exercise 4.3. Prove that for X � Pois(� ):

Var (X ) = �

Exercise 4.4 (Poisson Merging). Prove that for X � Pois(� ) and Y � Pois(� ) we have X + Y �
Pois(� + � ) (this is done in discussion)
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Exercise 4.5 (Poisson splitting). Prove that if we "split" X � Pois(� ) into two paths, by having an
arrival take one path with probability p and the other with probability 1 � p. Prove that the number
of arrivals to the �rst path Y is Pois(p� ) and is moreover independent of the number of arrivals to
the second pathZ , which is distributed according to Pois((1 � p)� ). (this is a homework problem)

We now explore the relationship between the binomial distribution and poisson distribution. The poisson
distribution actually turns out to be a limit of the binomial distribution, as we let n get large and p go to
zero. Speci�cally, we must have that limn !1 npn = � . Consider letting p = �

n . Then we get the PMF for
the binomial becomes:

Pr (X = k) =
�

n
k

�
(
�
n

)k (1 �
�
n

)n � k

=
n(n � 1):::(n � k + 1)

nk

� k

k!
(1 �

�
n

)n � k

=
n
n

n � 1
n

:::
n � k + 1

n
� k

k!
(1 �

�
n

)n (1 �
�
n

)k :

Now, as we let n ! 1 , we can see that the �rst k left terms go to 1, as well as the rightmost term. We
also know that the second to rightmost term approachese� � . This leaves us with the pdf for the poisson
distribution: Pr (X = k) = � k e� �

k ! .

Example 4.6 (St. Petersburg Paradox). I keep tossing a fair coin until I get heads. If this takesn
tosses, then I get 2n dollars. How much should I pay to play this game? Well, if W is the amount I
win, we can calculate:

E[W ] =
1X

k=0

2k 1
2k = 2(

1
2

+ 4
1
4

+ 8
1
8

+ : : : ) = 1 + 1 + 1 + :::: = 1

So I should pay an unbounded amount to play this game? Bernoulli said we should actually calculate
logU where U is our utility/payout, in which case we would only pay $4 to play this game.

Lemma 4.7. If X and Y are independent,

E[XY ] = E[X ] E[Y ]

Proof.

E[XY ] =
X

x

X

y

xyPXY (x; y)

=
X

x

X

y

xyPX (x)PY (y) =
X

x

xPX (x)
X

y

yPY (y) = E[X ] E[Y ]:

Remark 4.8. The converse is generallynot true:

E[X ] E[Y ] = E[XY ] 6=) X is independent of Y
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Lemma 4.9. If X and Y are independent,

Var (X + Y) = Var (X ) + Var (Y )

Proof. Without loss of generality (WLOG), we can say E[X ] = E[Y ] = 0, since variance is not a�ected by
the shifting of a constant and therefore subtracting out the means does not alter the variance. Then if we
let Z = X + Y, we have

Var (Z ) = Var (X + Y) = E[(X + Y)2] = E[X 2 + Y 2 + 2XY ]

= E[X 2] + E[Y 2] + 2 E[X ] E[Y ] = Var (X ) + Var (Y ):

The above two lemmas of course generalize to more than just two independent variables via induction.
We can also use the above lemma to calculate the variance of a binomial very easily, since a binomial
X � Bin (n; p) is equal to B1 + � � � + Bn , where eachB i � Bern (p). Then, we have that (since the B i are
iid)

Var (X ) = Var (
nX

i =1

B i ) =
nX

i =1

Var (B i ) =
nX

i =1

p(1 � p) = np(1 � p)

The above lemma raises the question, what ifX 1 and X 2 are not independent, but we would like to
calculate Var (X 1 + X 2)?

De�nition 4.10 (Covariance). Consider Var (X + Y) = E[(X + Y � E[X ] � E[Y ])2]. Now let X̂ =
X � E[X ] and Ŷ = Y � E[Y ]. Then

Var (X + Y) = E[(X̂ + Ŷ )2] = E[X̂ 2] + E[Ŷ 2] + 2 E[X̂ Ŷ ]:

This last term, E[X̂ Ŷ ], is called the covariance of X and Y , and it tells us how they change with
each other. We have that

Cov (X; Y ) = E[(X � E[X ])(Y � E[Y ])] = E[XY ] � E[X ] E[Y ]:

Intuitively, the covariance between two variables is related to how they a�ect each other. If X 1 increasing
causesX 2 to generally increase, then the covariance will be positive. IfX 1 increasing causesX 2 to generally
decrease, then the covariance will be negative.

De�nition 4.11 (Correlation Coe�cient).

� (X; Y ) =
Cov (X; Y )

p
Var (X ) Var (Y )

The above is known as the correlation coe�cient of two variables, and is always between -1 and 1.
This can be proved using the Cauchy-Schwarz Inequality (try it!)

4.2 Conditioning of RVs

When we considerX jY , the �rst thing to note is that this is just another random variable, with its own
PMF PX jY (xjy) = Pr (X = xjY = y). Therefore, we must still have that

X

x

PX jY (xjy) = 1

16



Lemma 4.12 (Memorylessness of Geometric RVs). We have that for geometric RVX

Pr (X = k + mjX > k ) = Pr (X = m)

Proof.

Pr (X = k + mjX > k ) = Pr (X = k + m \ X > k )=Pr (X > k )

=
Pr (X = k + m)

Pr (X > k )
=

(1 � p)k+ m � 1p
(1 � p)k

= (1 � p)m � 1p = Pr (X = m):

We can use a clever conditioning trick, along with the memorylessness property, to calculate the variance
of a geometric random variable. First, we needE[X 2]. We have by total probability:

E[X 2] = E[X 2jX = 1] Pr (X = 1) + E[X 2jX > 1]Pr (X > 1)

= p + (1 � p) E[(1 + X )2];

whereE[X 2jX > 1] = E[(1 + X )2] follows from the memorylessness property (convince yourself this is true).
Then,

E[X 2] = p + (1 � p)(1 +
2
p

+ E[X 2])

=) pE[X 2] = 1 +
2 � 2p

p
=

2 � p
p

=) E[X 2] =
2 � p

p2 :

Then we have that
Var (X ) = E[X 2] � E[X ]2 =

2 � p
p2 �

1
p2 =

1 � p
p2 :

Example 4.13 (Romance is dead). 2m people form couples. 50 years from now, the probability that
any person is alive isp. Now suppose that there areA people alive after 50 years. LetS be the
number of couples for which both people are still alive. We would like to �nd E[SjA = a]. In order
to do this, we further de�ne X i as the indicator that the �rst person of couple i survives, and Yi as
the indicator that the second person of couplei survives. Then S =

P
i X i Yi . Then, we have

E[SjA = a] = E[
X

i

X i Yi jA = a] =
X

i

E[X i Yi jA = a]

= m E[X i Yi jA = a]

= m Pr (X i Yi = 1 jA = a)

= m
a

2m
a � 1

2m � 1

= m

� 2m � 2
a� 2

�

� 2m
a

� :

Why have we included the last equality, rather than simplifying further? Because it lends itself to an
alternate interpretation of the solution. Consider couple i . What is the probability that they survive,
given that A = a? Well

� 2m � 2
a� 2

�
is the number of ways fora people to survive including this speci�c
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couple, and
� 2m

a

�
is the number of ways fora people to survive in general. More formally, we have:

Pr (X i Yi = 1 jA = a) =
Pr (A = ajX i Yi = 1) Pr (X i Yi = 1)

Pr (A = a)

Now, A is a Bin (2m; p) and AjX i Yi = 1 is a Bin (2m � 2; p). So we have:

=

� 2m � 2
a� 2

�
pa� 2(1 � p)2m � ap2

� 2m
a

�
pa(1 � p)2m � a

=

� 2m � 2
a� 2

�

� 2m
a

� :

And all we have to do is use linearity of expectations (and multiply by m) to get the same answer as
above.
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5 Lecture 5: Iterated Expectation, Continuous Probability, Uniform,
Exponential Distributions

Agenda

1. Law of Iterated Expectations

2. Continuous probability (CDF, Uniform, Exp)

5.1 Iterated Expectation

Recall how conditional expectation works:

E[X jY = y] =
X

x

x Pr (X = xjY = y)

We say that E[X jY = y] is the \expectation of X w.r.t. the distributions of X conditioned on Y = y, and
it is really just a number.

De�nition 5.1. Let X and Y be RVs. Then E[X jY ] is also a RV, the conditional expectation ofX
given Y , which has the valueE[X jY = y] with probability Pr (Y = y). It is important but subtle to
note that E[X jY ] is a RV itself.

Example 5.2. Suppose we roll a dieN times. Let X be the sum of the die rolls. Then we have that

E[X jN = 1] =
7
2

E[X jN = 2] = 7

and in general,E[X jN = n] = 7n
2 , and in general:

E[X jN ] =
7N
2

The di�erence here is subtle, but the last equality is actually a much stronger statement, as it equates
random variables rather than just numbers.

Out of this comes a natural question: sinceE[X jY ] is a RV, what is its expectation?

Theorem 5.3 (Iterated Expectations/Tower Rule).

E[E[X jY ]] = E[X ]

Proof.

E[E[X jY ]] =
X

y

E[X jY = y] Pr (Y = y)

=
X

y

X

x

x Pr (X = xjY = y) Pr (Y = y)

=
X

x

x
X

y

Pr (X = x; Y = y)

=
X

x

x Pr (X = x) = E[X ]:
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Example 5.4. We roll a die N times where N � Geom(p). As before, X represents the sum of the
N die rolls. Then we have:

E[X ] = E[E[X jN ]] = E
�

7N
2

�
=

7
2

E[X ] =
7
2p

Example 5.5 (Drunken walk on a line). Suppose we take a random walk, starting at the origin, on a
discretized line. Then if X n +1 is our location at time n + 1, then we have the recurrence:

X n +1 = X n + 1+ � 1�

where1+ is an indicator for drunk taking a +1 step, and likewise 1� is an indicator for drunk taking
a � 1 step. Then we have:

E[X n +1 ] = E[X n ] + 1=2 � 1=2 = E[X n ] = 0

But what about the variance of the walk? E[X 2
n ] =?. We have

Pr (X 2
n +1 = ( k + 1) 2jX n = k) = Pr (X 2

n +1 = ( k � 1)2jX n = k) = 1 =2

So then we have:

E[X 2
n +1 jX n = k] =

(k + 1) 2 + ( k � 1)2

2
= k2 + 1

=) E[X 2
n +1 jX n ] = X 2

n + 1

Then we can calculate

E[X 2
n +1 ] = E[E[X 2

n +1 jX n ]] = E[X 2
n ] + 1

= E[X 2
n � 1 + 1 + 1

and then, after noting E[X 2
0 ] = 0, we can see that

Var (X n ) = E[X 2
n ] = n

5.2 Continuous Probability

Continuous RVs is a concept you should be relatively familiar with from CS70, but we will go over it quickly
again and there are some subtleties to make sure are clear.

In most settings, a continuous sample space is more natural than a discrete one (such as distance,
time, temperature, etc). For a continuous RV, there is no such thing asPr (X = x). Well there is, but
it's just equal to zero and generally pretty meaningless. We need to instead de�ne probability over sets
that have "length" and quantify "allowable events". What "allowable events" refers to here gets more into
measure theory, which we are not going to get into in this course, as in virtually all engineering applications
the distinction is unimportant. So rather than talking about Pr (X = x), we instead talk about f X , which
is the probability density function (PDF) of a continuous random variable.

De�nition 5.6. X is a continuous RV if

1. 9 a non-negative function f X s.t.

P(X 2 B ) =
Z

B
f X (x)dx
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is well-de�ned.

2. It must hold that Z 1

�1
f X (x)dx = 1

The function f is characterized by the random variableX , hence the subscript.

Remark 5.7. Pr (X = a) = 0, which means that Pr (X < a ) = Pr (X � a) for continuous random
variables, and henceforth I will be lazy and interchange< and � for continuous RVs at will.

This density has the property that if we wish to calculate the probability that our random variable falls
in a small � sized interval, we have

Pr (X 2 [x; x + � ]) =
Z x + �

x
f X (t)dt � f X (x)�

for small enough delta, of course. Then we have

f X (x) �
Pr (X 2 [x; x + � ])

�

Hence the name "density function". Note that it is perfectly �ne for the density to be greater than 1 at
any particular point, as it is not a probability. We have only the requirement that the integral of f X

over its domain must be equal to 1 (think about why this must be), and that the density must be
nonnegative . Another useful interpretation may be to think of PDF values at certain points as relative
likelihoods; that is, if f X (s) = 2 f X (t), then we are twice as likely to see values in a small� neighborhood
around s than values in a small � neighborhood aroundt (if the density is continuous).

Example 5.8. let f X (x) = 1
2

p
x for 0 < x < 1 and take on the value 0 otherwise. Then we have that

it is nonnegative, and that Z 1

0
f X (x)dx = 1

So this is a valid PDF.

Now we mention the cumulative distribution function , which completely analogously to the discrete
case is simplyPr (X < x ). Since the CDF would be

F (x) =
Z x

�1
f X (t)dt

The CDF has the following properties:

1. FX (1 ) = 1

2. FX (�1 ) = 0

3. if X is discrete, then
Pr (X = k) = FX (k) � FX (k � 1)

and in the continuous case:

f X (x) =
d

dx
FX (x)

Where the last fact follows from the fundamental theorem of calculus (ifF is di�erentiable). This can
be a very useful fact, as often the CDF is easier to calculate than the PDF.
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Example 5.9. Imagine throwing darts at a unit circle. We model this by saying that the location of
where the dart lands in the circle is completely random (i.e. uniform over the circle). We would like
to �nd the CDF and PDF of Y , which is the distance from the origin of where the dart lands. We
have that

Pr (Y � y) =
area of circle of radius y

area of whole circle

=
�y 2

�
= y2

. Then we have that simply

f Y (y) =
d
dy

FY (y) = 2 y

We can calculate that:

P(0:5 < Y < 0:6) = FY (0:6) � FY (0:5) = 0 :36� 0:25 = 0:11

.

We have some analogous de�nitions and lemmas that pretty much follow from the discrete case:

De�nition 5.10. The expectation of a continuous RV X is
Z 1

�1
xf X (x)dx

Lemma 5.11.

E[g(X )] =
Z 1

�1
g(x)f X (x)dx

Lemma 5.12. if X; Y are independent, then

FX;Y (x; y) = FX (x)FY (y)

Now we go over some popular continuous RVs.

De�nition 5.13 (Uniform RV). If X � Unif [a; b], then it must have constant probability density
betweena and b and zero density everywhere else, which tells us that

f X (x) =
1

b� a

for x 2 [a; b].

We can calculate forX � U[a; b] that:

E[X ] =
Z b

a
x

1
b� a

dx =
a + b

2

and also

Var (X ) = E[X 2] � E[X ]2 =
(b� a)2

12
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Exercise 5.14. verify the Variance of a uniform RV between a and b is actually what we claimed
above.

De�nition 5.15 (Exponential RV). Let's say we wanted to �nd a continuous RV that had the same
"memoryless" property as the discrete Geometric RV, and analogously measured "time to success"
(or failure, however you want to look at it). But now this time, time is a continuous thing, say the
amount of time before a lightbulb burns out. Speci�cally, for the memoryless property, we want
Pr (X > t + sjX > s ) = Pr (X > t ). That is, we want

Pr (X > t + s \ X > s )
Pr (X > s )

=
Pr (X > t + s)

Pr (X > s )
= Pr (X > t )

The question then becomes, what functiong(t) = Pr (X > t ) satis�es g(s+ t )
g(s) = g(t)? Well, eventually,

we might notice that g(x) = ex works! The problem is, this increasesg(x) as x increases, which
is not the behavior we want if we are to keep the analogy. Well,g(x) = e� x also works, and it is
monotonically decreasing, so that is better! In fact, we can even throw in a constantg(x) = e� �x ,
for increased versatility, and it still is monotonically decreasing and memoryless. Then we have

FX (x) = 1 � Pr (X > x ) = 1 � e� �x

=)
d

dx
FX (x) = f X (x) = �e � �x

for any � > 0. We can further check that this integrates to 1 over its domain (since it is measuring
time to success, this is a positive random variable):

Z 1

0
f X (x) = �

Z 1

0
e� �x = 1

as desired. And with that I conclude the most long winded introduction to the exponential random
variable that has ever been.

Exercise 5.16. Show that if X � Exp(� ), then

E[X ] =
1
�

Var (X ) =
1
� 2

De�nition 5.17 (Laplace Distribution). Let Z = X � Y , where X; Y � exp(� ), and X and Y are
independent. Then how isZ distributed? Well, if X > Y , then by the memoryless property we have
that Z is simply an exponential RV. This happens with probability 1=2, so we havef Z (z) = 1

2 �e � �z .
What if then Y > X ? Then once again by the memoryless property, we get thatZ is simply a negated
exponential RV: f Z (z) = 1

2 �e + �z . So putting this together we have what is known as theLaplace
Distribution:

f Z (z) =
1
2

�e � � j zj
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6 Lecture 6: Normal Distribution, Continuous Analogs, Derived Dis-
tributions

Agenda: see above

6.1 Review

Exercise 6.1. Let R be the distance from the origin of a point randomly sampled on a unit ball (in
R3).

1. what is the CDF of R?

2. PDF?

3. Expectation?

6.2 Normal Distribution

De�nition 6.2 (Normal Distribution). Let X � N (�; � 2), where � is the mean of the distribution and
� is the standard deviation. Here is the PDF:

f X (x) =
1

p
2�� 2

e
� ( x � � ) 2

2 � 2

We call the pdf of X � N (0; 1) is FX (x) = �( x), which cannot be expressed in elementary functions

The PDF of the normal is clearly positive. We would like to also show that it integrates to 1:

Proof. We will show this when � = 0 and � 2 = 1. The idea is to show that

� Z 1

�1
f X (x)dx

� 2

= 1

We have that:
� Z 1

�1
f X (x)dx

� 2

=
� Z 1

�1
f X (x)dx

� � Z 1

�1
f Y (y)dy

�

=
Z 1

�1

Z 1

�1
f X (x)f Y (y)dxdy

=
Z 1

�1

Z 1

�1

1
2�

e� (x 2 + y2 )=2dxdy

=
Z 2�

0

Z 1

�1

1
2�

e� ( r 2 )=2rdrd� (using polar integration, where dydx = r dr d� )

=
Z 1

�1
e� ( r 2 )=2rdr:

We can useu substitution to solve this integral, which will evaluate to 1 (think about the pdf of the
exponential RV! Or just do it manually).

Some properties of Normal distributions:

1. if X; Y are independent normals, thenZ = X + Y is also normalZ � N (� X + � Y ; � 2
X + � 2

Y ).
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2. The sum of two dependent normals isn't always Normal. ConsiderX � N (0; 1), and Y = X w.p. 1/2
and � X wp 1/2. Then both X and Y are normal but X + Y is not normal.

3. We have that if X � N (�; � 2), then
X � �

�
� N (0; 1)

Example 6.3. Let X � N (2; 16). We wish to �nd Pr (� 2 < X < 6). We have

Pr (� 2 < X < 6) = Pr (� 4 < X � 2 < 4) = Pr (� 1 <
X � 2

4
< 1)

= Pr (� 1 < N (0; 1) < 1) = �(1) � �( � 1) = 2�(1) � 1 � 0:68

Where � is the CDF of the standard normal distribution.

Exercise 6.4. convince yourself that �(1) � �( � 1) = 2�(1) � 1 if you haven't already.

Example 6.5. Suppose male height is distributed asN (70; 5) and female height isN (64; 4). What's
the probability that a random chosen male is taller than a randomly chosen female? Express your
answer in terms of �.

Ans: Let X be the boys height and Y the girls height. We want to calculate
P(X � Y > 0) = P(Y � X < 0). Note that Y � X � N (� 6; 9), and so

Y � X + 6
p

9
� N (0; 1)

So we have

P(Y � X < 0) = P(
Y � X + 6

3
< 2) = �(2)

6.3 Continuous Analogs of Discrete RVs

For joint distributions , we can generalize from the discrete case:

P(A) =
X

(x;y )2 A

PX;Y (x; y)

and analogously:

P(A) =
Z

A
f X;Y (x; y)dxdy

The de�nitions of marginal probabilities, conditional probabilities, multiplication rule, and Bayes Rule
all carry over naturally into the domain of continuous probability, all you need to do is replace summations
with integrals and pX 's with f X 's.

Example 6.6. We can have discrete and continuous RVs de�ned jointly. For example. For example,
let X be the outcome of a die roll, andY � Exp(X ). Then we have

pX (x) =
1
6

and
f Y jX (yjx) = xe� xy
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Example 6.7. Let X � Bern (1=2) and Y = 2X . We have that the distribution of Y is

Pr (Y = y) = Pr (2X = y) = Pr (X =
y
2

)

more generally, if X is discrete RV, and Y = f (X ), then

Pr (Y = y) = Pr (f (X ) = y) = Pr (X 2 f � 1(y))

Be careful! Is it then true that in the continuous case if X � U[0; 1] and Y = 2X . Is it then true that

f Y (y) = Pr (Y = y) = Pr (2X = y) = Pr (X = y=2) = f X

� y
2

�

NO . There are many things wrong here, �rst of all the quantity Pr (Y = y) = 0 ; 8y. Second, this does not
integrate to 1: Z 2

0
f Y (y)dy =

Z 2

0
f X (y=2)dy = 2

Instead, we have to derive the CDF ofY properly using the CDF. It IS true that:

FY (y) = Pr (Y � y) = Pr (2X � y) = Pr (X �
y
2

) = FX (
y
2

and then

f Y (y) =
d
dy

FX (y=2) =
1
2

f X (
y
2

)

Which we can check does integrate to 1.

Example 6.8 (More on the relationship between Exponential and Geometric RVs). Toss a coin every
� seconds, and let the probability of headsp = 1 � e� �� , with � << 1. Let N � Geom(p) and
X � exp(� ). Then we have that FN (n) = Pr (N < n ) = 1 � e� �n� = FX (n� ). If you graph FN (n)
and FX (n� ), then you can see how the exponential is the limit of the geometric as� ! 0.

It is useful to know that the Covariance is a multilinear function, meaning

Cov (X + Y; W + Z ) = Cov (X; W ) + Cov (X; Z ) + Cov (Y; W) + Cov (Y; Z)

And it is also useful to note that the variance Var (X ) = Cov (X; X ). We also have that Cov (aX + b; Y) =
a Cov (X; Y ). This yields the following useful identity:

Var
� X

X i

�
=

X

i

Var (X i ) +
X

i

X

j 6= i

Cov (X i ; X j )

The Tower Rule or Iterated Expectation or the Law of Total Expectation also holds in the
continuous case. We have:

E
Y

[E
X

[X jY ]] =
Z

Y
f Y (y)

Z

X
xf X jY (xjy)dxdy

=
Z

Y

Z

X
xf X jY (xjy)f Y (y)dxdy =

Z

X

Z

Y
xf X;Y (x; y)dydx

=
Z

X
xf X (x)dx = E[X ]:

The above result should make intuitive sense when you think about it, and the intuition is quite similar
to the intuition behind discrete total probability. If we want to �nd E[X ], and the instances ofY subdivide
our probability space, it may be easier to calculateE[X jY ] for every Y . But then we have to weight each
expectation the probability that particular instance of Y happens, hence the outside expectation over theY
variable.
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Example 6.9. Consider trying to estimate X given some information Y with the estimate E[X jY ].
Well we have that the error E is E = X � E[X jY ], and we further have that

E[E ] = E[X ] � E[E[X jY ]] = E[X ] � E[X ] = 0

and therefore E[X jY ] is called anunbiased estimator. We will learn more about this later in the
semester though when we talk about MMSE.
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7 Lecture 7: Order Statistics, Convolution, Moment Generating Func-
tions

Agenda:

1. Law of Total Variance

2. Order Statistics

3. Convolution

4. Moment Generating Functions

7.1 Conditional Variance and Law of Total Variance

De�nition 7.1 (Conditional Variance). Let X; Y be RVs. We can de�ne the conditional variance
Var (X jY = y) as the variance of the conditional distribution P(X = xjY = y).

Remark 7.2. Var (X jY ) is a RV that assumes the valueVar (X jY = y) with probability Pr (Y = y).

Lemma 7.3 (Total Variance). We have that

Var (X ) = E[Var (X jY )] + Var (E[X jY ])

I will now try to o�er some sort of intuition before the formal proof. We want to answer the question:
how much doesX vary? Well, if we �x Y , we could take the expectation over all they 2 Y of Var (X jY ).
But even if we are �xing Y , there is still some variance inX , and therefore some variance inE[X jY ], which
is where the second term comes into play. The �rst term is the expected variance from the mean ofX jY ;
the second is the variance of that mean.

Proof. We have that

Var (X ) = E[X 2] + E[X ]2

= E[E[X 2jY ]] � (E[E[X jY ]])2

= E[Var (X jY ) + E[X jY ]2] � (E[E[X jY ]])2

= E[Var (X jY )] +
�
E[E[X jY ]2] � (E[E[X jY ]])2�

= E[Var (X jY )] + Var (E[X jY ]):

Example 7.4. We have a biased coin, we toss isn times, and we let X be the number of heads, and
Y � U[0; 1] be the probability of heads (the bias of the coin). First, we have that

E[X ] = E[E[X jY ]] = E[nY ] = n E[Y ] =
n
2

Now, we can calculate the variance:

Var (X ) = Var (E[X jY ]) + E[Var (X jY )]

= Var (nY ) + E[nY (1 � Y )]

= n2 Var (Y ) + n E[Y ] � n E[Y 2]

=
n2

12
+

n
2

�
n
3

=
n2

12
+

n
6

:
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Compare this value to tossing a fair coinn times, which has variancen
4 .

Example 7.5 (Random number of Random Variables). Say we haveY = X 1 + ::: + X N , where the X i

are all independent andN is also random. What is Var (Y )? First, we have:

E[Y ] = E[E[Y jN ]] = E[N E[X i ]] = E[N ] E[X i ]

Where the second to last equality follows from linearity of expectations. Also, sinceN is given in the
inner expectation, we can treat it as a constant (until the outer expectation). We then have:

Var (Y ) = E[Var (Y jN )] + Var (E[Y jN ])

= E[N Var (X i )] + Var (N E[X i ])

= E[N ] Var (X i ) + E[X i ]2 Var (N ):

7.2 Order Statistics

Let X be a continuous RV for which x1; x2; :::; xn are values of a random sample of sizen. We can then
reorder the x i 's from smallest to largest (we don't need to worry about ties, as we are in a continuous sample
space here!).

Example 7.6. SupposeX � U[0; 1], and n = 4, and we observex1 = 0 :5; x2 = 0 :7; x3 = 0 :2; x4 = 0 :1.
Then we can order them as

x (1) = 0 :1; x (2) = 0 :2; x (3) = 0 :5; x (4) = 0 :7

where x ( i ) i the i th smallest observation

We call X ( i ) =
�
x ( i )

�
the i th order statistic .

Theorem 7.7. If X has pdf f X (x), the marginal pdf of the i th order statistic is

f X ( i ) (y) =
n!

(i � 1)!(n � i )!
(FX (y)) i � 1(1 � FX (y))n � i f X (y)

Proof. We present a sketch of the proof. We would like to calculate

Pr (X ( i ) 2 f y; y + dyg) � f X ( i ) (y)dy

We needi � 1 of the samples to be less thany, which is the (FX (y)) i � 1 term. We also need exactly one to
be right around y, which is approximately f X (y)dy. Finally, we need (n � i ) of the samples to be greater
than y, which is the (1 � FX (y))n � i term. Lastly, we have to count how many ways we can pick with ones
come �rst and which one is the the i th largest (which exactly determines which ones come aftery), which is
n �

� n
i � 1

�
= n !

( i � 1)!( n � i )! . Combining all of these together yields the exact expression we were looking for!

Example 7.8 (Special case whenX is uniform). SupposeX � U[0; 1]. Recall that f X (x) = 1, and
FX (x) = x (convince yourself if you've forgotten why this is true!). Then we can plug in and see that

f X ( i ) (y) =
n!

(i � 1)!(n � i )!
yi � 1(1 � y)n � i

for 0 < y < 1. This is a special case of aBeta Distribution .
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Exercise 7.9. What is the probability that the 9th smallest of of ten draws from X � U[0; 1] is greater
than 0.8?

7.3 Convolution

Let Z = X + Y, where X and Y are both continuous and independent. We would like to calculate the PDF
of Z . We can relate Z to X using total probability:

f Z (z) =
Z

x
f X;Z (x; z)

Furthermore, we have

FZ jX = Pr (X + Y � zjX = x) = Pr (Y � z � xjX = x) == Pr (Y � z � x) = FY (z � x)

=) f Z jX (zjx) = f Y (z � x)

Now, incorporating this into our original expression for f Z (z), we have

f Z (z) =
Z

x
f X (x)f Y (z � x)dx = ( f X � f Y )(z)

which is called aconvolution. Intuitively, the expression should make sense, as we are just integrating over
all possible combinations ofX and Y that could sum to z. The discrete case is entirely analogous:

Pr (Z = z) =
X

k

Pr (X = k) Pr (Y = n � k)

Example 7.10. SupposeX; Y � U[0; 1] are independent. What is f Z (z), where Z = X + Y? We
could do an integral and get the right answer via the de�nition of the convolution, but we can also
visually see that it becomes a triangle:

TODO 1. tikz :(

As a general remark, convolution always creates more uncertainty than we started out with. In your
homework you will show that if X; Y � N (0; 1) are independent, thenZ = X + Y � N (0; 2).

7.4 Moment Generating Functions (MGFs)

De�nition 7.11 (Moment Generating Functions). We de�ne the Moment Generating Function of
an RV X as

M X (s) = E[esX ]

Whats the point of MGFs? It seems like a fairly arbitrary de�nition. Well, �rst recall the Taylor series
for e:

esX = 1 + sX +
(sX )2

2!
+

(sX )3

3!
+ :::

=) E[esX ] = 1 + sE[X ] +
s2

2!
E[X 2] +

s3

3!
E[X 3] + :::

Then, we can observe that
d
ds

E[esX ]

�
�
�
�
s=0

= E[X ]
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and
d2

ds2 E[esX ]

�
�
�
�
s=0

= E[X 2]

continuing in this manner, we can see that

dn

dsn M X (s)

�
�
�
�
s=0

= E[X n ]

Which is an extremely useful property of the MGF and can help with many computations. We also note
that M X (0) = 1 must be true.
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8 Lecture 8: MGFs, Bounds/Concentration Inequalities (Markov, Cheby-
shev, Cherno�)

Agenda:

1. MGF's (examples and properties)

2. Limit theorems (Markov, Chebyshev, Cherno�)

8.1 Properties of MGFs

Recall that the Moment Generating Function (MGF) of an RV X is the transform:

M X (s) = E[esX ] =
1X

k=0

sk E[X k ]
k!

=
Z 1

�1
esx f X (x)dx

and that
dn

dsn M X (s)

�
�
�
�
s=0

= E[X n ]

Some utilities of the MGF:

1. Finding higher moments often becomes easier (derivatives are usually easier than integrals!)

2. Convolution becomes multiplication in the MGF domain, which is often much easier (again, avoiding
integrals)

3. Great analytical tool to prove things (such as the CLT!)

And here are some properties to keep in mind:

1. M X (0) = 1

2. if X > 0, then M X (�1 ) = 0

3. if X < 0, then M X (1 ) = 0

4. if Y = aX + b, we have

M Y (s) = E[es(aX + b) ] = esb E[easX ] = esbM X (as)

Example 8.1 (MGF of exponential RV). Let X � Exp(� ). Then we have that:

M X (s) = E[esX ] =
Z 1

0
esX �e � �x dx

= �
Z 1

0
ex (s� � ) dx

= �
ex (s� � )

s � �

�
�
�
�

1

0

=
�

� � s
: (assuming � > s )

It is �ne here that the MGF is not de�ned for all s, as we only need for it to be de�ned arounds = 0
so that we can take derivatives evaluated ats = 0.
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We can use the MGF of an exponential to easily calculate moments:

E[X ] = M 0
X (0) =

y
(y � s)2

�
�
�
�
s=0

=
1
�

and we note that

E[X k ] =
dk

dsk M X (s)

�
�
�
�
s=0

=
�k !

(� � s)k+1

�
�
�
�
s=0

=
k!
� k

Example 8.2 (MGF of a Poisson). We have that for X � Pois(� ) that

M X (s) =
1X

k=0

esk Pr (X = k)

=
1X

k=0

esk e� � � k

k!

= e� �
1X

k=0

(es � )k
k!

= e� � ees � = e� � + �e s
;

which is valid for all values of s.

Example 8.3 (MGF of Normal RV). Let X � N (0; 1). Then we have

E[esX ] =
1

p
2�

Z 1

�1
esx e� x 2 =2dx

=
1

p
2�

Z 1

�1
esx � x 2 =2dx

=
es2 =2
p

2�

Z 1

�1
e� (x 2 =2� sx + s2 =2) (complete the square in the exponent)

= es2 =2 1
p

2�

Z 1

�1
e� (x � s)2 =2

= es2 =2:

In the last line we have used that fact that 1p
2�

e� (x � s)2 =2 is the PDF of a standard normal that
has been shifted bys, and so must integrate to 1.

Now, if Y � N (�; � 2), then Y = �X + � and we have

E[esY ] = E[es( �X + � ) ] = e�s E[e�Y s ] = e�s + � 2 s2 =2:

Remark 8.4. An interesting and useful fact (that we will not prove in this course) is that a given
MGF corresponds to a unique CDF. This is related to the fact that M X (s) is just a Laplace transform
of f X (x). Inversions are usually performed by just pattern matching.

Remark 8.5 (Convolving densities corresponds to multiplying their transforms). Take Z = X + Y, and
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assumeX and Y are independent. Then we have that

M Z (s) = E[esZ ] = E[es(X + Y ) ] = E[esX ] E[esY ] = M X (s)M Y (s)

Example 8.6 (MGF of binomial). We can use the above remark very nicely in computing the MGF
of a binomial RV, because we can use the fact that a binomial is simply the sum of bernoullis. We
have X � Bin (n; p) = Y1 + ::: + Yn , where Yi � Ber (p). We have then

M Yi (s) = E[eYi s] = (1 � p)es�0 + pes = 1 � p + pes

=) M X (s) = (1 � p + pes)n

Example 8.7 (Summing of a random number of random variables). Let Y = X 1 + � � � + X N , where
X 1; : : : ; X N are i.i.d. and N is a RV. We then have that

M Y (s) = E[eY s] = E[E[eY s jN ]]

= E[E[es(X 1 + ��� + X N ) jN ]] = E[M X (s)N ]

= E[eN ln( M X (s)) ]

= M N (ln M X (s)) :

Example 8.8 (Sum of Geometric number of exponential RVs). We will begin with the fact that if
N � Geom(p), then

M N (s) =
pes

1 � (1 � p)es

Then, if Y = X 1 + � � � + X N , where eachX i is an iid exponential RV. Then, from the previous example,
we have that M Y (s) = M N (ln( M X (s))) We also have from before that M X i (s) = �

� � s . Then, we
have

M Y (s) =
pMX i (s)

1 � (1 � p)M X i (s)
=

p �
� � s

1 � (1 � p) �
� � s

:

8.2 Limiting Behavior of RV's

Suppose we observe a sequenceX 1; X 2; :::; X n i.i.d. samples. We let

M n =
P

X i

n

be the sample mean (which makes sense, as it is just an average). We have:

1. E[M n ] = n E [X i ]
n = �

2. Assuming Var (X i ) < 1 , we have

Var (M n ) =
1
n2

X
Var (X i ) =

Var (X i )
n

=) 0

as n =) 1

A natural question is then: What happens to the \deviation" jM n � E[M n ]j = jM n � � j?
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De�nition 8.9 (Markov Bound). For a non-negative random variable, we have that

aP(X � a) � E[X ]

Proof. De�ne the indicator variable Z =

(
1 X � a
0 otherwise

. Then we can see thataZ � X by examining the

two cases.

� If X < a then Z = 0, so the condition is 0 � X , which is true because we are consideringX non-
negative.

� If X � a then Z = 1, so the condition is a � X , which is true by the condition with which we started
this case.

Thus, we can take expectation on both sides:

E[aZ] � E[X ]

a E[Z ] � E[X ]

aP(X � a) � E[X ]:

Example 8.10. Let X � U[0; 1]. Then we have

Pr (X > 3=4) �
1=2
3=4

= 2=3

and
Pr (X > 1) �

1
2

Which seems pretty stupid/not very powerful. But it is this way because it makes very little assump-
tions on the RV. We don't hate on Markov too much because it is actually the building block for
many other bounds, and is often very useful when we don't know much or anything about the higher
moments of our RV.

Remark 8.11 (Markov Inequality intuition). Say my distribution has a mean of � , and I want to
maximize the probability that Pr (X � k� ). How would I do this? I would do this by letting X take
on a value of k� with probability 1

k , and X = 0 otherwise. This achieves the correct expectation
while still maximizing Pr (X � k� ).

De�nition 8.12 (Chebyshev's Inequality). Chebyshev's Inequality states

Pr (jX � � j � a) �
Var (X )

a2 ;

where � = E[X ].

Proof. We know that Var (X ) = E[(X � � )2]. We then have that

Pr ((X � � )2 � a) �
Var (X )

a
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by Markov's inequality. This implies

=) Pr (jX � � j �
p

a) �
Var (X )

a

=) Pr (jX � � j � a) �
Var (X )

a2 :

Note that Chebyshev's inequality holds for any random variable, not just positive ones (in contrast to
Markov's inequality. We also note the special case:

Pr (jX � � j � k� ) �
1
k2

when X has mean� and variance � 2.

Remark 8.13 (Weak Law of Large Numbers). We can use Chebyshev's inequality to show a result
known as theWeak Law of Large Numbers . Suppose we have an average of a bunch of i.i.d. RVs
M n = X 1 + ��� + X n

n . Then we have that Var (M n ) = n Var (X i )
n 2 = Var (X i )

n . This implies via Chebyshev's
inequality that:

P r (jM n � E[X i ]j � a) �
�

na2

De�nition 8.14 (Cherno� Bound). Suppose we know the MGF of our random variableM X (s) =
E[esX ]. Note that this is a positive RV, so we can apply markov's inequality:

Pr (esX � a) �
E[esX ]

a
=

M X (s)
a

=) Pr (esX � eas ) �
E[esX ]

eas

=) Pr (sX � as) �
E[esX ]

eas

where the last step follows sincef (x) = ex is monotonic. Then, if s > 0 we have

=) Pr (X � a) �
E[esX ]

eas

alternatively, if s < 0 we have

=) Pr (X � a) �
E[esX ]

eas

Note that the Cherno� bound is a function of s. We often have to choose the optimal choice fors to get
a good bound (take derivative and set to zero!). Also if we recall the Taylor series forex , the idea behind
a Cherno� bound is that it can use all the moments of a RV to bound said RV. Compare this to Markov's,
which only uses the �rst moment, and Chebyshev's, which only uses the second moment. This might lead
one to think that Cherno� is always better than applying Markov/Chebyshev bounds, or even applying
Markov's bound to higher moments of the random variable. This leads to the following remark:

Remark 8.15 (Is Cherno� always better than Markov/Chebyshev?). In short, no. Consider using
Markov's inequality to bound a higher moment of our RV X . This yields (provided the higher
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moment is positive of course)Pr (X � a) � E [X k ]
ak . Here I claim:

inf
k> 0

E[X k ]
ak � inf

s> 0

E[esX ]
eas

Why is this true? Lets examine the RHS:

E[esX ]
eas =

1
eas

X

k

sk E[X k ]
k!

=
X

k

�
(as)k e� as

k!

�
E[X k ]

ak :

Now, the above expression is simply averaging over the moment bounds where you let the moment
be distributed as a Poisson random variable with parameteras, and in general, the minimum over
the moment bounds will be smaller than the average (no matter how the averaging is done, and so
minimizing over s doesn't change anything), and thus we get the result.
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9 Lecture 9: Convergence, Weak and Strong Law of Large Numbers,
Central Limit Theorem

Agenda:

1. Recap of Limit Theorems (Cherno�)

2. Laws of Large Numbers (WLLN, convergence in probability)

3. Central Limit Theorem

9.1 Recap of Bounds

Example 9.1. Let X � N (0; 1). We can bound the tail probabilities of X using the cherno� bound:

Pr (X � k) �
E[esX ]

esk

Recalling the MGF of a normal distribution, we have:

=
es2 =2

esk = es2 =2� sk

Minimizing this expression overs > 0 corresponds to minimizing the exponent. Taking the derivative,
we see

� k + s� = 0 ) s� = k

Plugging this optimal value s� in, we get:

Pr (X � k) � e� k 2 =2

Which is actually exponential decreasing, which is much closer to the true behavior of the normal
distribution.

Exercise 9.2. Extend the above exercise to show that forX � N (0; 1), we have

Pr (jX j � k) � 2e� k 2 =2

De�nition 9.3 ((Weak) Law of Large Numbers (WLLN)). If we perform an experiment n times inde-
pendently and

M n =
1
n

nX

i =1

X i

� If X i has mean� and variance � 2

� E[M n ] = E[ 1
n

P n
i =1 X i ] = 1

n E[X i ]n = �

�

Var (M n ) =
1
n2

X
Var (X i ) =

� 2

n

This tells us that if X 1; ::::; X n are i.i.d. RV's with mean � and �nite variance, then for every � > 0,
we have

Pr (jM n � � j � � ) ! 0

as n ! 1
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Proof. The proof of the last claim is quite simple and only uses Chebyshev's inequality. It tells us at what
"rate" this probability goes to zero as n ! 1 . We have

Pr (jM n � � j � � ) �
� 2

� 2n
! 0 asn ! 1

What does the WLLN tell us? It tells us that

lim
n !1

Pr (jM n � � j � � ) = 0

Remark 9.4. Similar to the de�nition of the limit. For any � > 0, � > 0, there exists somen0(�; � )
such that

Pr (jM n � � j � � ) � � )

for all n > n 0(�; � ). We say then that M n converges in probability to � .

Example 9.5. Let Yn = min( X 1; :::; X n ) for X i � U[0; 1]. We have that

Pr (jYn � 0j � � ) = Pr (jX 1j > �; jX 2j � �; :::; jX n > � ) = (1 � � )n

Which goes to zero for all� > 0 asn ! 1 . This tells us that Yn converges in probability to 0.

Example 9.6. Suppose we have an arrival process where we divide the number line into exponentially
increasing sized intervals:

I k = f 2k ; 2k + 1 ; :::; 2k+1 � 1g

And suppose we have exactly one arrival in each interval. So we letYn = 1 if there is an arrival at
time n, and Yn = 0 if there is no arrivals. We then have that

Pr (Y1 = 1) = 1

Pr (Y2 = 1) = Pr (Y3 = 1) = 1 =2

Pr (Yn = 1) =
1
2k if n 2 I k

This implies that

lim
n !1

Pr (jYn � 0j � � ) = lim
n !1

Pr (Yn = 1) = lim
k !1

1
2k = 0

Which tells us that Yn converges in probability to 0.

The above highlights the weakness of convergence of probability. We can see of course that for any
�nite n, there are certainly an in�nite number of 1's (arrivals) after n, yet it still converges in probability.
This is �xed by something known as almost sure convergence, which we will not get deep into in this course.

Question: What happens to Sn =
P n

i =1 X i . This is just a bunch of convolutions! In particular, if each
X i � U[0; 1], we know that convolving two uniform pdfs looks like a triangle pdf. Convolving yet again
gives us a quadratic polynomial. Each time we convolve the width gets higher (the variance blows up) and
the order of the polynomial becomes larger. This general phenomenon happens for non-uniform iid RVs
(amazingly) as well!

Our problem is that the mean and variance ofSn both blow up as n ! 1 . To �x this, we de�ne

cSn =
Sn � n�

p
n�
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which we can verify has zero mean and unit variance.

Theorem 9.7 (Central Limit Theorem). The CLT says that

lim Pr (cSn � x) = �( x)

where �( x) is the CDF of the standard normal distribution! This type of convergence is known as
convergence in distribution.

Proof. We present a sketch of the proof. Note thatSn ! N (0; 1) implies that Sn ! N (n�; n� 2).

Exercise 9.8. SeeSinho's notes on modes of convergence (I will hopefully type up my own sometime
soon, but these are very good)

Remark 9.9 (SLLN vs WLLN). The WLLN, as we already discussed, says that

Pr (jM n � E[X i ]j � a) �
�

na2

Which tells us that
lim

n !1
Pr (jM n � E[X i ]j � a) = 0

The Strong Law of Large Numbers, on the other hand, says something stronger. It says that:

Pr ( lim
n !1

M n = � ) = 1

On the surface, these look similar. But the key di�erence is that for some� > 0, the SLLN says
that jM n � � j > � will only happen a �nite number of times (in other words, there exists someN
such that n > N ) j M n � � j < � ). On the other hand, the WLLN makes no such guarantee. More
speci�cally, the WLLN says that M n convergesin probability, while the SLLN says M n converges
almost surely or with probability one. For more details on the di�erence between these two things,
you should refer to Sinho's notes or the course notes.
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10 Lecture 10: Information Theory

Agenda:

1. Recap of WLLN

2. Proof of CLT

3. Introduction to Information Theory (Entropy, Compression)

10.1 Proof of CLT

Recall the CLT:

Theorem 10.1 (Central Limit Theorem). The CLT says that

lim Pr (cSn � x) = �( x)

where �( x) is the CDF of the standard normal distribution! This type of convergence is known as
convergence in distribution.

where we had de�ned cSn as
cSn =

Sn � n�
p

n�

Proof. Let

Zn =
P n

i =1 X ip
n

where eachX i is iid and E[X i ] = 0 and Var (X i ) = 0. We also note that if Y � N (0; 1), then M Y (s) =
es2 =2 and furthermore logM Y (s) = s2=2. So it su�ces to show that the log of the MGF of Zn is s2=2. We
have

M Z n (s) = E[esZ n ] = E[exp(
s

p
n

nX

i =1

X i )]

= E[exp(
s

p
n

X 1) � � � exp(
s

p
n

X n )]

= E[exp(
s

p
n

X 1)] � � � E[exp(
s

p
n

X n )]

=
�
M X (

s
p

n
)
� n

Now, recall that M X (0) = 1, and M 0
X (0) = 0, and M 00

X (0) = 1, by our assumptions and the properties of
the MGF. Now we consider:

lim
n !1

logM Z n (s) = lim
n !1

�
n logM X (

s
p

n
)
�

= lim
n !1

"
logM X ( sp

n )
1
n

#

Now, letting y = 1p
n

= lim
y! 0

�
logM X (sy)

y2

�

Now notice that the limit of both the numerator and the denominator is zero, so we can use L'Hopital's rule!

= lim
y! 0

�
sM 0

X (sy)
2yM X (sy)

�

The numerator and denominator once again both go to zero. L'Hopital again!
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= lim
y! 0

�
s2M 00

X (sy)
2M X (sy) + 2 ysM 0

X (sy)

�
=

s2

2

Example 10.2 (Polling Example). Suppose we askn randomly sampled voters if they support candidate
X . SoX i = 1 if yes, and zero otherwise. Suppose we want a 95% con�dence interval thatjM n � pj < � ,
where p is the true probability that each voter supports our candidate, and M n = 1

n

P
X i is the

empirical mean. Well, Chebyshev tells us that

Pr (jM n � pj � a) �
Var (M n )

a2

But now we note that Var (X i ) = p(1� p) � 1=4, which tells us that Var (M n ) = 1
n Var (X i ) � 1

4n .
Now, suppose we want to know ourp value to within 0 :1 with probability at least 95%. Mathemati-
cally, we want:

Pr (jM n � pj � 0:1) � 0:05

and we know

Pr (jM n � pj � 0:1) �
Var (M n )

0:12 �
1

4n(0:01)

Which implies that in order for us to obtain a 95% con�dence interval, we need to setn � 500. If
a = 0 :01, then we would needn � 50000 for a 95% con�dence interval!

Now, let's compare this with the CLT method. The CLT tells us that

M n � E[M n ]
p

Var (M n )
! N (0; 1)

and we want
Pr (jM n � pj � 0:1) � 0:05

() Pr (
jM n � pj

1
2

p
n

�
0:1

1=(2
p

n)
) � 0:05

But notice that the left hand side is roughly a standard normal. To get a 95% con�dence interval
for a normal distribution, we use the fact that we know 95% of the probability mass lies within 2
standard deviations, and in this case a standard deviation is 1. So we have

0:2
p

n � 2 ) n � 100

Which we can see is much better than the result Chebyshev gives us.

10.2 Intro to Info Theory

The �eld of information theory was pioneered by Claude Shannon in his seminal 1948 paper "A Mathemati-
cal Theory of Communication". There is a great textbook on the topic "Elements of Information" by Cover
and Thomas, which is a highly recommended resource. Also, if you are interested in this topic further, you
should take EECS 229A!

Shannon was concerned with the question, how much information can I reliably send over a noisy chan-
nel?
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Info Source

ok

transmitter

ok

noise

ok

noise source

message signal

TODO 2. �x this diagram

There are two things we can concern ourselves with.

1. How much can we compress our information in the presence of no noise? This is known as theSource
Coding problem.

2. How much information can we send in the presence of noise? This is known as theChannel Coding
Problem

Shannon was able to answer both of these questions, and he was also even able to say that we can
separately optimize for both of these criterion and arrive at a globally optimal solution!
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11 Lecture 11: Info Theory, Binary Erasure Channel

Agenda:

1. Information theory overview (Entropy, AEP, Capacity of BEC)

Recall that there were two fundamental questions Shannon was exploring:

1. How much can we compress our information in the presence of no noise? This is known as theSource
Coding problem.

2. How much information can we send in the presence of noise? This is known as theChannel Coding
problem.

Theorem 11.1 (Source Coding Theorem). Given N i.i.d. RV's X 1; :::; X n , each having entropyH (X ),
then these can be compressed with a source coding channel into no more thanN (H (X )+ � ) bits, 8� > 0
as N ! 1 .
Conversely, we also have that compression to fewer thanNH (X ) bits is impossible without loss of
information.

De�nition 11.2 (Entropy). The entropy of a discrete RV X is de�ned as

H (X ) :=
X

x 2X

PX (x) log
1

PX (x)

= E[log
1

PX (x)
]:

We can interpret this de�nition very roughly by noting that the quantity log 1
PX (x ) roughly corresponds

to the \surprise" of seeing the outcomex. Then the entropy corresponds to the \average surprise" of our
distribution. Another interpretation of entropy is that is correlated to the uncertainty of the random variable.

Example 11.3. When X � Bern (p), then

H (X ) = plog
1
p

+ (1 � p) log
1

1 � p
=: H (p)

We can graph this quantity as p varies from 0 to 1. Note that at 0 and 1, the quantity is 0, and at
p = 1=2, the quantity is 1. We also can calculate that H (0:11) = 1=2. This tells us that if we have a
really long sequence ofBern (0:11) RV's, then roughly half of the bits are \redundant", i.e. they can
be compressed.

We further can naturally de�ne
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1.
H (X; Y ) =

X

x;y

PX;Y (x; y) log
1

PX;Y (x; y)

Exercise 11.4. Show that
H (X; Y ) = H (X ) + H (Y jX )

where

H (Y jX ) :=
X

x 2X

p(x) H (Y jX = x)

= �
X

x 2X

p(x)
X

y2Y

p(yjx) log p(yjx)

= �
X

x 2X

X

y2Y

p(x; y) log p(yjx)

= �
X

x 2X ;y 2Y

p(x; y) log p(yjx)

= �
X

x 2X ;y 2Y

p(x; y) log
p(x; y)
p(x)

=
X

x 2X ;y 2Y

p(x; y) log
p(x)

p(x; y)
:

Example 11.5. We now consider a motivating example for the AEP. Suppose we 
ip a coinn times
independently. What is a \typical" sequence? Well, there are 2n total sequences, but a \typical"
sequence hasnp heads andn(1 � p) tails. The probability of a particular \typical sequence" S is:

P(S) = pnp (1 � p)n (1 � p)

= 2 np log p2n (1 � p) log(1 � p)

= 2 n (p log p+(1 � p) log(1 � p) = 2 � nH (p) :

Our next question is then, how many such typical sequences are there? Well, there are exactly
� n

np

�
,

which it turns out is approximately 2 nH (p) for large n! How do we know this? Well it uses Stirling's
approximation, and we won't go into detail here, but the �rst steps look something like this:

�
n
np

�
=

n!
(np)!(n(1 � p))!

and we use the fact thatn! �
�

n
e

� n
.

What does this example tells us? Well, we have 2nH (p) sequences, and all of these sequences occur
with probability 2 � nH (p) . This means virtually all of the probability must be used up by these \typical
sequences"! This is known as theAsymptotic Equipartition Property , and is really quite a mind-
boggling phenomenon, which is hopfully illustrated by this following example:

Example 11.6. Suppose our sequence of RVs are iidBern (0:11), and we are sending sequences of
n = 1000 of these bits. We know that H (p) = 0 :5. This tells us that our \typical set" is composed of
the set of approximately 2500 sequences containing roughly 1000� 0:11 1's and 1000� 0:89 0's, and each
of the sequences in this typical set have roughly equal probability. Then the source coding theorem
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tells us we can transmit these sequences of 1000 bits with on average only around 500 bits!

How could we achieve this in practice? This is a very di�cult question, and one that information theorists
do not typically concern themselves with. We can, however, consider the following computationally infeasible
scheme:

1. put each of the 2500 \typical" sequences into a lookup table with 2500 entries

2. if the input sequence is in the typical set, simply send a \0" following by the bit string that is the
index of the typical sequence in the lookup table. The decoder can just look up the typical sequence
in his copy of the lookup table when he receives the compressed message.

3. if the sequence is not \typical", just send a \1" followed by the whole sequence. This happens with
probability that goes to zero as n ! 1 .

The bit at the beginning is simply to let the receiver know whether to look in the lookup table or to just
look at the next 1000 bits. This scheme is entirely infeasible because we cannot store 2500 size lookup table
in our computer, and much research in the last 50 years has been devoted to achieving the source coding
theorem in practice.

Theorem 11.7 (AEP). We now formalize the Asymptotic Equipartition Property. If X 1; :::; X n are
i.i.d. � PX (x), then

�
1
n

logP(X 1; :::; X n ) �! H (X )

in probability as n ! 1

11.1 Capacity of BEC

We have aBinary Erasure Channel looks like this:

-

-� � � � � � � � � �1

P P P P P P P P P Pq

0 0

1 1

�

�

1 � �

1 � �

e

Where this models the \noise" of a channel which takes a bit and erases it (maps it toe) with some
probability � . We also have aBinary Symmetric Channel , which looks like this:

-

-

Q
Q

Q
Q

Q
Q

Q
Q

QQs�
�

�
�

�
�

�
�

� �30 0

1 1

p

1 � p

1 � p

p

As you can see, it 
ips each bit independently with probability p.

For the rest of this lecture, we will focus on the Binary Erasure Channel. Intuitively, we note that a
binary erasure channel should have a higher capacity, which we will de�ne shortly, than a BSC, because a
BEC tells you exactly which bits have been corrupted.
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De�nition 11.8 (Capacity). We say that the capacity of a channel is the maximum rate of reliable
communication for that channel. Mathematically,

Rate = R =
L n

n

where L n is the length of your message, andn is the length of your encoding.

Say m is the message your encoder receives (som 2 f 0; 1gL n ), and at the end your decoder outputs a
guessm̂. We would like to minimize the probability of error:

P (n )
e = max

m
Pr [m 6= m̂]

We say that rate R is achievable for the channel if for every positive numbern that is \long enough", there
exists and encoder and decoder functionsf n and gn respectively such that

P (n )
e ! 0

as n ! 1 . The largest achievable rateR is called the capacity of our channel.

Theorem 11.9. We have that the capacity of a BEC channel is

CBEC (p) = 1 � p

bits per channel use.

This is really a remarkable result (think about why!). We have to show two things:

1. The converse : We need to be able to show that it is not possible to achieve a rate of 1� p+ � for any
� > 0.

2. achievability : We would like to show that there is actually a scheme (even if it is computationally
infeasible) that achieves this 1� p rate

The proof of the converse goes as follows: Suppose there is a genie which is actually helping you encode
and decode your message bytelling you in advance exactly which bits will be erased. We can show that
even with this help, we cannot achieve a capacity better than 1� p as n ! 1 .
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12 Lecture 12: Wrapup of Info Theory

Agenda:

1. Info theory wrapup (Capacity of BEC, converse and achievability)

2. Quick Note on Hu�man Codes

3. Markov Chain Intro

Recall the setup of the BEC, which erases each bit independently with probabilityp.

m 2 f 0; 1gL n encoder�����! X (n ) channel�����! Y (n ) decoder�����! m̂

Suppose we have an input ofL n bits into our channel. We encode ourL n bits into a sequence ofn bits,
where n � L n (to account for the noise of the channel). Then we have the rate of our channel is

Rate = R =
L n

n
bits per channel use

and the capacity C is simply the maximum rate which we can reliably communicate (i.e. not lose any
information with high probability). We say that the probability of error is:

P (n )
e = max Pr (m̂ 6= m)

We would like to more thoroughly prove the theorem from last time, namely that

CBEC = 1 � p

As we mentioned last time, we need to show two things:

1. The converse : We need to be able to show that it is not possible to achieve a rate of 1� p+ � for any
� > 0.

2. achievability : We would like to show that there is actually a scheme (even if it is computationally
infeasible) that achieves any rate up to 1� p

Proof. 1. Converse: The idea behind the converse is to have a genie tell you exactly which bits will be
erasedbeforehand. Even with this information, you cannot achieve a rate better than 1� p bits/channel
use of reliable communication.

2. Achievability: We would like to show that we can achieve a rateR = 1 � p � � for any � > 0.
Shannon's insight was that we can leverage the SLLN to do this! By the SLLN, the probability that
the channel erases exactlynp of the n input symbols is exactly 1 asn ! 1 . Shannon's idea was then
to create amassivelookup table. Each row of the table corresponded to an input, so there are 2L rows.
There were then n columns, so each input corresponded to ann bit string, which is represented by
X (n ) in our diagram. Then how was this table populated? Shannon's idea was to populate the table
with iid Bern (1=2) coin 
ips! This lookup table is called the Codebook C. Each row ci corresponds
to a "codeword" corresponding to a speci�c input messagem.

WLOG, we can assume that the BEC channel erases the lastnp bits (we know it erases almost exactly
np random bits, so we might as well assume they all come at the end). Then we can just considerC0,
which is a truncated codebook with all np bits shoved to the end of each codeword (so the entire right
half of the original codebook is now just erasures).

Now, how should the receiver decode? The decoder simply consults his own codebook (he has his
own copy), to see which one of the 2L codewords matches on then(1 � p) bits that were sent. When
do we get an error ? We get an error whenmore than one codeword is consistent with then(1 � p)
bits the decoder receives from the channel.
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Analysis: We can assume further WLOG that message 1 was sent. We have then that

P(error) = Pr (c0
1 is not unique)

= Pr

0

@
2L
[

i =2

f c0
i = c0

1g

1

A

�
2L
X

i =2

2� n (1 � p)

� 2L 2� n (1 � p)

= 2 nR � n (1 � p) = 2 n (R � (1 � p)) ;

which goes to zero ifR < 1 � p. In particular, if R = 1 � p � � , then

P (n )
e � 2� n� n !1����! 0;

exponentially fast!

Example 12.1. If n = 10000, p = 0 :5, � = 0 :01. We know that

CBEC (1=2) =
1
2

which implies our capacity is 5000 bits. But we back o�, we haveL = 10000(1 � 0:5 � 0:01) = 4900.
Then we have

Pe � 2� 10000� 0:01 = 2 � 100

which is extremely small.

Here is a theorem we won't prove:

Theorem 12.2. The capacity of a BSC channel is

CBSC (p) = 1 � H (p)

This should make sense, as we get a capacity of zero whenp = 1=2, and a capacity of 1 whenp = 0 or
p = 1. In general, we have the following theorem from Shannon:

Theorem 12.3. For a general Discrete Memoryless Channel (DMC) which has a conditional proba-
bility P(Y jX ), we have that:

C = max
P (X )

I (X ; Y ) = max
P (X )

H (X ) � H (X jY )

Intuitively, the mutual information I (X ; Y ) (which you explore a bit more in discussion and homework),
tells us how much information you learn about X being given Y . Then of course we should maximize this
in order to be able to transmit the most information through our channel!

12.1 Hu�man Coding

Suppose we have a an alphabetX 2 f A; B; C; D g where PA = 0 :4, PB = 0 :35, PC = 0 :2, and PD = 0 :05.
We can calculate that

H (X ) = 1 :74

Then Hu�man's algorithm to create an encoding for this alphabet is as follows:
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1. Remove two members of our alphabet with the smallest probabilities, and assign them a the bits 0 and
1 respectively. Then, add their probabilities, concatenate the letters, and add the combined letters
back into the alphabet.

2. keep doing this until there is only one giant combined member of our alphabet (which will have
probability 1).

After running this algorithm, we can read o� the encodings by running backward through the binary tree
we created when running the algorithm.

X = A?

A[0] X = B ?

B [10] X = C?

C[110] D [111]

The result of running this algorithm on our example (work this out yourself!) gives

A ! 0 B ! 10 C ! 110 D ! 111

We can further calculate that the expected number of bits we have to use is 1:85. Notice that this is not quite
optimal in that it does not achieve the entropy. This is because we have to work with integers, whereas the
entropy does not. We can show that Hu�man coding is actually optimal when each member of our alphabet
has a probability of the form p = 1

2i .
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13 Lecture 13: Markov Chains

De�nition 13.1 (Markov Chain). A Markov chain is a sequence of random variablesX 0; X 1; X 2; :::
satisfying the following 3 conditions:

1. The assumption that

P r (X n +1 = cn +1 jX 0 = c0; :::; X n = cn ) = P r (X n +1 = cn +1 jX n = cn )

2. X 0; X 1; ::: take on values from some setS

3. X 0 is an arbitrary pmf on S.

For a homogeneous discrete time Markov chain, we sayPr (X n +1 = i jX n = j ) = Pji

Example 13.2. Here is an example of a markov chain, represented with a diagram. It represents the
three fundamental states of any Berkeley student.

�ne

0:7

ok

0:6

0:2

0:2

ugh

0:1 0.1

0:2

0.4

We can specify what our initial state X 0 is, and answer questions such as what is theP r (X 5 =
ugh)? Over 16 weeks, what fraction of time are you ok?

Example 13.3 (PageRank). PageRank is google's algorithm for returning search results. It is now
much more complicated, but at its core it uses Markov chains to determine how popular each website
on the internet is. There are a few ways to formulate this notion:

1. Score each pagei with � i , such that

� i =
X

j

� j Pji

X

i

� i = 1

The �rst equation is called a balance equation. More on that later.

2. bot randomly picks link on each page it visits. � i is the equal to the probability that the bot is
on pagei at some point in time t � 0.
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3. � i = fraction of time bot spends on pagei .

All three of these formulations are equivalent.

Let's start working our way more towards these balance equations. First, we are interested in what
happens to �nite states as n ! 1 . We de�ne r ij (n) as the probability of going from state i to state j in n
time steps. Well, r ij (1) = Pij , since there is only one way to get fromi to j in one time step. r ij (n) is more
complicated, but luckily we can actually write it in terms of r ij (n � 1) as follows:

r ij (n) =
X

k2S

r ik (n � 1)Pkj

The above are a form of theChapman Kolmogorov Equations. They should intuitively make sense: the
only way to get from i to j in n steps is if you �rst get to somewhere else inn � 1 steps, and then make the
last step to state j . We are just summing over all the possible places you could be at time stepn � 1. Lets
examine r ij (2). We have that

r ij (2) =
X

k2S

r ik (1)Pkj =
X

k2S

Pik Pkj

=
�
Pi 1 Pi 2 � � � Pim

�

2

6
6
6
4

P1j

P2j
...

Pmj

3

7
7
7
5

Now further recall from CS70 our transition probability matrix:
2

6
6
6
4

P11 P12 � � � P1m

P21 P22 � � � P2m
...

...
. . .

...
Pm 1 Pm 2 � � � Pmm

3

7
7
7
5

We can then see that r ij (2) = ( P2) ij . This is quite convenient! It is also very easy to then see that
r ij (n) = ( Pn ) ij , or the (i; j )th entry of Pn . If the values of each column ofPn converge to the same value,
then this tells us that no matter where we start out, you have an equal probability of ending up in a given
state.

Remark 13.4. Consider the following Markov chain:

1 2

1

1

It is easy to see that we will "ping pong" in�nitely back and forth, and it is entirely deterministic
which state we are in at any given time (given that we know where we started).

Example 13.5 (2 spiders, 1 
y). Consider the following Markov chain:
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0 1 2 3 4 5

1 1

1=2

1=2

1=2

1=2

1=2

1=2

1=2

1=2

We will intuitively always end up either at state 0 or state 5, and it is much more likely that we
get stuck at 5 if we start in state 4 than if we start in state 1. So once again,P r (X n = i ) is not
always independent of where we start. In which situations is it? Stay tuned...

We �rst note that a more concise way to write (1) in the PageRank example would be�P = � whereP
i � i = 1. Such a � satisfying these two equations is called thestationary distribution of a markov

chain. We further note the following de�nitions:

De�nition 13.6. State i is recurrent if, starting in state X 0 = i , the chain will revisit i at some point
with probability one. Furthermore, we say that a state is positive recurrent if E[Ti ] < 1 , where
Ti is the time to return to state i after leaving it. Otherwise if E[Ti ] = 1 then the state is called
null recurrent (provided the probability we return to state i is still 1). If a state is not recurrent
then it is called transient .

De�nition 13.7. The class of a state i is f j : j accessible fromi and i accessible fromj g

Proposition 13.8. The states in a class are either all recurrent or all transient.

Proof. Let i and j be in the same class and suppose towards a contradiction thati is recurrent while j is
transient. Since there is a path from i to j , there must be somen � 1 such that Pn

ij > 0. Now, given
that we start in state i , I will revisit i in�nitely often by recurrence. It takes Geom(Pn

ij ) visits to i before
I will successfully land in state j n steps later. Hence,j is recurrent since geometric RVs are almost surely
�nite.

De�nition 13.9. Consider si = f n : r ii (n) > 0g. Then we de�ne the periodicity of a state as
GCD(si ). In english, the periodicity of a state is the GCD of the all the possible times we could
return to that state. In the "ping pong" example, both states have a periodicity of 2. If a state has
a self loop, then its periodicity is trivially one.

Proposition 13.10. All the states in a class have the same period.

Proof. We start by denoting d(s) as the period of states. Once again, consideri and j in a communicating
class together. We knowi and j are accessible from each other, so WLOG consider a path of lengthn from
i to j and a path of length m from j to i . Then there is a path of n + m from i to i , so it follows from the
de�nition of the period that n + m is divisible by d(i ). Consider any path from j to j . Say it has length t.
This creates yet another path from i to i of length n + t + m (�rst go from i to j , then j to j , then back to
i ). B the same logic, we have thatn + m + t is divisible by d(i ). This implies that t is divisible by d(i ), for
all t such that there is a path of length t from j back to j . Since this holds for all t, this means that d(i ) is
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a factor of f n : r jj (n) > 0g, and by de�nition it is less than or equal to the greatest common factor, d(j )1.
Reversing the roles ofi and j in the above argument implies that d(j ) � d(i ), which implies that d(j ) = d(i ),
as desired.

If the above proof was confusing, it is very helpful to draw it out!
In general, any MC with a single aperiodic recurrent class (and some transients) must converge in the

following sense:

1. for each statej ,
lim

n !1
P (n )

ij = � j ; 8i

2. The � j are given by a system of equations:

� j =
mX

k=1

� k Pkj

X

i

� i = 1

3. � i = 0 if state i is transient, and � i > 0 if i is recurrent.

Now, what if we wanted to �nd the expected amount of time to get from one state to another, given that
we are in stationarity? We will now develop a tool known as�rst-step equations to deal speci�cally with
this omnipresent problem. It is actually easiest to see with an example.

Example 13.11. Consider the MC below.

1 2 3 4

1=2

1=2

1=2

1=3

1=2

1=3

1=3

1=2

1=2

We further de�ne x i as the expected amount of steps we must take to reach a certain special
state, say 1 in this case. Then trivially we can observe thatx1 = 0. What about x2? Well, with 1/3
probability, we are done, but we could also could go to states 3 and 4. By splitting up into cases, we
can see

x2 = 1 + Pr (we go to 1)E[time to 1 from 1]

+ Pr (we go to 2)E[time to 1 from 2]

+ Pr (we go to 3)E[time to 1 from 3]

+ Pr (we go to 4)E[time to 1 from 4]

= 1 + 1 =3 � 0 + 0 � x2 + (1 =3)x3 + (1 =3)x4

Note that we include the 1+ since we need to take at least one step no matter what happens. Using
similar logic, we can come up with the following system of equations for the other nodes:

x3 = 1 + (1 =2)x3 + (1 =2)x4

x4 = 1 + (1 =2)x2 + (1 =2)x4

Which leaves us with three equations and three unknowns, which means we can solve for eachx i .

1We can even claim that d(j ) is divisible by d(i ), but why overcomplicate things?
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In general, we can use the same idea to de�ne amean recurrence time t �
s = the average number of

steps the MC takes to return to state s. Then we have

t �
s = 1 +

mX

i =1

Psi t i

where t i is of course the expected amount of time to get from statei to state s.

Example 13.12. We can consider the same Markov chain from the previous example, but a more
general hitting time problem. Given setsA and B such that A \ B = ; , we want to �nd the probability
that we reach a node in setA before we reach a node in setB . Using the MC from the previous
example, we can letA = f 1g and B = f 4g. Then now we can de�ne x i = probability that we reach
A before B given we start in state i . Then trivially, x1 = 1 and x4 = 0. We also have by splitting
into cases.

x2 = Pr (we go to 1) � Pr (we get to A �rst given go to 1)

+ Pr (we go to 2) � Pr (we get to A �rst given go to 2)

+ Pr (we go to 3) � Pr (we get to A �rst given go to 3)

+ Pr (we go to 4) � Pr (we get to A �rst given go to 4)

= 1=3 � 1 + 0 � x2 + 1=3 � x3 + 1=3 � 0

Similarly, we can formulate another equation for x3, which would allow us to solve for our two
unknowns.

Remark 13.13. There is an inherent connection to the material we have (or will) learned about in
CS188. We can think about collecting a rewardRi every time to MC is in state i , and then we can
further de�ne r i as the expected reward we get starting from statei until we reach some setA. Then
we have

r i = Ri 8i 2 A

r i = Ri +
X

j

Pij r j 8i =2 A

We can also think about adding in a "discount factor" so if X (n) = i then we receive reward
� n Ri , where � is the discount factor. Then similarly we have:

r i = Ri 8i 2 A

r i = Ri + �
X

j

Pij r j 8i =2 A

Exercise 13.14. Suppose Alice commutes between 2 houses every week. If the weather is great (this
happens with probability p), she grabs her �shing rod and �shes on her way to the other house.
There are N �shing rods. Assuming this has been going on for a very long time already, what is the
probability that she has no rods when the weather is good?Hint: Set up a MC with N + 1 states.
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14 Lecture 14: More Markov Chains

14.1 First-step equation modeling

Example 14.1. What is the expected number of tosses until you see two consecutive heads in a row
(assuming the coin is fair)?

We can model this with a Markov chain with three states: the state of having seen zero heads,

one head, and two heads.

0 1 2

11

1=2

1=2

1=2

Then, we de�ne
T2 = min f n � 0jX n = 2g

and then
� (i ) = E[T2jX 0 = i ]

clearly, � (2) = 0. We also have that

� (0) = 1 +
1
2

� (0) +
1
2

� (1)

� (1) = 1 +
1
2

� (0) +
1
2

� (2)

We can solve these equations, since there are three variables and three unknowns (try it!)

In general, for First Step Equations , for a MC over state spaceX = f 1; 2; :::; N g and A � X we let

TA = min f n � 0jX n 2 Ag

and then the expected hitting time from each node as

� A (i ) = E[TA jX 0 = i ] 8i 2 X

and note we have that
� A (i ) = 0 8i 2 A

Example 14.2. Consider the following MC.

1 2 3 4

1=2

1=2

1=2

1=3

1=2

1=3

1=3

1=2

1=2
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Considering the above MC chain, a question we could possibly ask is: what is the probability that
I hit state 1 before I hit state 4? This is obviously dependent on what state we start in. In a very
similar manner to the �rst step equations, we can de�ne some clever variables and solve a system of
equations. We let

� (i ) = Pr [T1 < T 4jX 0 = i ]

Which is simply the probability that we hit state 1 before we hit state 4 given that we start in state
i . Then we can note immediately that

� (1) = 1 ; � (4) = 0

and we can also set up the relations:

� (2) =
1
3

� (1) +
1
3

� (3) +
1
3

� (4)

=
1
3

+
1
3

� (3)

� (3) =
1
2

� (3) +
1
2

� (4)

and so

� (3) = � (4) = 0

� (2) =
1
3

+
1
3

� (3) =
1
3

;

which gives the �nal result � (i ) =
�
1 1=3 0 0

�
.

Example 14.3. We once again 
ip a fair coin until we see two consecutive heads. Whats the expected
number of tails I see?

We can model this via a Markov chain seen below, with a reward functiong:

S H

T

HH

1=2

1

1=2

1=2

1=2

1=2

Then we have that g(S) = g(H ) = g(HH ) = 0 and g(T) = 1. And we can de�ne 
 (s) as the
expected total reward given that we start in state s. We have that


 (S) =
1
2


 (H ) +
1
2


 (T)


 (H ) =
1
2


 (HH ) +
1
2


 (T)

57




 (T) = 1 +
1
2


 (T) +
1
2


 (H )


 (HH ) = 0

we can solve this system of equations to get
 (S) = 3.

Theorem 14.4. If MC is irreducible, aperiodic, and positive recurrent, then

lim
n !1

Pr [X n = j jX 0 = i ] = � (j )

and the MC is said to beasymptotically stationary .

In general, in the �nite setting, every irreducible MC has all its states being positive recurrent. On the
other hand, in the in�nite case, we can have all states being positive recurrent, null recurrent, or transient.

Theorem 14.5 (Big Thm for MCs). 1. A MC is either irreducible or reducible

2. if the MC is irreducible, then it is either transient (in which case no � exists), positive recurrent
(a unique � exists), or null recurrent (no � exists).

3. furthermore, if the chain is positive recurrent, then it is either periodic or aperiodic. If it is
aperiodic, then no matter where we start we always converge to� .

Example 14.6 (Another null recurrent MC). Consider

1 2 3 � � � i i+1

1=2

1=2

1=3

2=3

1=4

3=4 i=(i + 1)(i � 1)=i

1=(i + 1)

Is this MC transient or recurrent? Recall that being transient is the same as the probability of
not returning to a state is greater than 0. We have

Pr [We do not return to state 1 at time n | start at state 1] =
1
2

�
2
3

�
3
4

� � �
n

n + 1
=

1
n + 1

This goes to zero asn ! 1 , so the chain is recurrent. But is it positive or null recurrent?
We have that

� (1) = E[T1jX 0 = 1]

14.2 Reversibility of MCs

Assume we have an irreducible and positive recurrent Markov Chain, initialized at its invariant distribution
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� . The notion of reversing a chain is as follows: Suppose for everyn, (X 0; X 1; :::; X n ) has the same joint
pmf as its "time reversed" version (X n ; :::; X 0), then we call the chain reversible .
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15 Lecture 15: Wrapup (reversible) Markov Chains, and beginning
Poisson Processes

Agenda:

1. Reversible MCs

2. Poisson Processes

15.1 Reversible MCs

Consider an irreducible MC f X n g1
n =0 on the �nite state space X with transition probability matrix P. The

question is: When does a MC \look the same" whether it is run forward or backward? More formally, when
does running the chain backwards give the same transition probabilities and invariant distribution? Here
are some facts:

1. A MC run backward is always still a MC (needs proof)

2. If the MC is reversible, then the backward chain is the same MC as the forward chain.

Proof. 1. We have that
Pr [X k = i k jX k+1 = i k+1 ; :::; X k+ n = i k+ n ]

=
Pr [X k = i k X k+1 = i k+1 ; :::; X k+ n = i k+ n ]

Pr [X k+1 = i k+1 ; :::; X k+ n = i k+ n ]

Now, we use the Markov Property, and I drop the i j 's for simplicity:

Pr [X k+ n jX n + k � 1] Pr [X n + k � 1jX n + k � 2] � � � Pr [X k+1 jX k ] Pr [X k ]
Pr [X k+ n jX n + k � 1 = i n + k � 1] Pr [X n + k � 1jX n + k � 2] � � � Pr [X k+2 jX k+1 ] Pr [X k ]

=
� (i k )P(i k ; i k+1 )

� (i k+1 )

Notice that this is only a function of i k+1 , which shows that the backwards chain satis�es the Markov
Property! Furthermore, if we denote ~P as the transition probability matrix for the reversed chain, then
we have that:

~Pi k +1 ;i k =
� (i k )P(i k ; i k+1 )

� (i k+1 )

So then, if our chain is reversible, we have the condition that

~Pi k +1 ;i k = Pi k +1 ;i k =
� (i k )P(i k ; i k+1 )

� (i k+1 )

=) Pi k +1 ;i k =
� (i k )P(i k ; i k+1 )

� (i k+1 )
:

Theorem 15.1. If a MC is reversible, it has an invariant distribution �

Proof. We need to show that 8j; � (j ) =
P

i � (i )Pij () � = �P . We have that:

X

i

� (i )Pij =
X

i

� (j )Pji = � (j )
X

i

Pji = � (j ):

Summary: Detailed balance equations being satis�ed aresu�cient but not necessary to have a stationary
distribution.
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Remark 15.2 (Su�cient condition for MC to be reversible). Fact: Start with a graph associated with
a MC, forget self loops and make all the arrows undirected. Then we have an undirected graph. If
this resulting graph is a tree, then detailed balance equations hold. Note that the converse does not
necessarily hold. Also note that this is not a necessary condition for detailed balanced equations to
hold, only su�cient.

15.2 Poisson Processes

A Poisson Process is the continuous time analog of a "coin 
ip" or Bernoulli process. Some motivation:

1. Good model for arrivals of packets at a router, customers arriving at a cashier, photons at a detector,
etc.

De�nition 15.3 (Poisson Process). We denoteN t as the total number of arrivals we have at any time
t.

TODO 3. draw graph

We denoteTi as the time of the i th arrival, and Si as the inter-arrival times, so

Si = Ti � Ti � 1

and we de�ne:
S1; :::; Sn � iid Expo(� )

Formally, we de�ne:

N t =

(
maxn � 1f njTn � tg t � 0
0 t < T 1

Recall for an exponential distribution � � Expo(� ), we have

1. F� (t) = 1 � e� �t

2. E[� ] = 1
�

3. Var (� ) = 1
� 2

4. Memorylessness:Pr [� > t + sj� > s ] = Pr [� > t ]

5. Pr [� � t + � ]j� > t ] = �� + o(� )

Note that the "little-o" notation just refers to any function such that:

lim
� ! 0

o(� )
�

= 0

Note that for example � 2 2 o(� )

proof of (5).
Pr [� � t + � ]j� > t ] = Pr [� > � ] = e� �� = 1 � �� + o(� )

The above probability is the probability that there are no arrivals in a tiny � amount of time. Then
the probability of one arrival is approximately �� , and the probability of more than one arrival in a tiny �
amount of time is o(� ), which we assume is essentially zero. So in a tiny amount of time, we only ever see
one or zero arrivals. In Bertsekas, we start with this assumption and then derive that the interarrival times
must be exponential, but we follow the Walrand book and assume that they are exponential and then derive
this property.
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Theorem 15.4. Poisson Processes are memoryless.

In pictures, if N t � PP(� ), then so is (N t 0+ s � N t ). The implication is that if we take increments of
a poisson process that do not overlap in time, then these increments areindependent and stationary
(meaning if we shift in time, the statistics remain the same).

) 8 0 � t1 < t 2 < ::: < t n f (N t n +1 � N t n )gare independent and distribution depends only on (tn +1 � tn )

Proof. Straightforward from the memoryless property of the exponential.

Theorem 15.5. If N = f N t jt � 0g is a PP(� ), then N t = the number of arrivals in (0; t) is distributed
according to a poisson distribution with parameter�t :

Pr (N t = k) =
e� �t (�t )k

k!

Proof. We start by �nding the joint probability density of T1; :::; Tk ; Tk+1 , where we know there arek arrivals
in (0; t). We have

f (t1; :::; tk )dt1 � � � dtk+1 = Pr [T1 2 f t1; t1 + dt1g; :::; Tk 2 f tk ; tk + dtk g; Tk+1 > t ]

= Pr [S1 2 f t1; t1 + dt1g; S2 2 f t2 � t1; t2 � t1 + dt2g; :::;

Sk 2 f tk � tk � 1; tk � tk � 1 + dtk g; Sk+1 > t � tk ]

=
�
�e � �t 1 dt1

� �
�e � � ( t 2 � t 1 ) dt2

�
� � �

�
�e � � ( t k � t k � 1 dtk

�
e� � ( t � t k )

= � k e� �t dt1dt2 � � � dtk :

Note that this joint distribution does not(!) depend on t1; :::; tk , which tells us that conditioned on the
number of arrivals in an interval, those arrivals are uniformly distributed in the interval! Of course, we must
have that they are in the correct order still.
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16 Lecture 16: Properties of Poisson Processes

Agenda:

1. Recap of Poisson Processes

2. Proof that number of arrivals in (0,T) is � Pois(�T ).

3. examples

4. Merging and Splitting of PPs

5. Erlang Distribution

6. Random-Incidence-Paradox

Recall we have this theorem:

Theorem 16.1. If N = f N t jt � 0g is a PP(� ), then N t = the number of arrivals in (0; t) is distributed
according to a Poisson distribution with parameter �t :

Pr (N t = k) =
e� �t (�t )k

k!

and we had begun working through a proof:

Proof. We start by �nding the joint probability density of T1; :::; Tk ; Tk+1 , where we know there arek arrivals
in (0; t). We have

f (t1; : : : ; tk )dt1 � � � dtk+1 = Pr [T1 2 f t1; t1 + dt1g; : : : ; Tk 2 f tk ; tk + dtk g; Tk+1 > t ]

= Pr [S1 2 f t1; t1 + dt1g; S2 2 f t2 � t1; t2 � t1 + dt2g; : : : ;

Sk 2 f tk � tk � 1; tk � tk � 1 + dtk g; Sk+1 > t � tk ]

=
�
�e � �t 1 dt1

� �
�e � � ( t 2 � t 1 ) dt2

�
� � �

�
�e � � ( t k � t k � 1 dtk

�
e� � ( t � t k )

= � k e� �t dt1dt2 � � � dtk

=) f T1 ;:::;T k (t1; :::; tk ) = � k e� �t

Note that this joint distribution does not depend on t1; :::; tk , which tells us that conditioned on the
number of arrivals in an interval, those arrivals are uniformly distributed in the interval! Of course, we must
have that they are in the correct order still. The way I like to think about this is simply dropping these
arrivals randomly in the interval, and then assigning the arrivals to be in the correct order. Now, we have

NT (k) =
Z

t 1

Z

t 2

� � �
Z

t k

f T1 ;:::;T k (t1; :::; tk )dt1 � � � dtk

= � k e� �t
Z t

0
� � �

Z t

0
dt1 � � � dtk :

The above expression is only correct if we have the condition thatt1 < ::: < t k . Let S be the support of the
pdf. Then this equals

� k e� �t V ol(S)

What is V ol(S)? If we had no constraints as to order, then the volume would betk . But by symmetry, all
of the possible orderings (of which there arek!) have the same volume, so we have to divide byk!. If this is
not intuitive, then consider the case whenk = 2.
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TODO 4. draw square for k =2, and show how vol(S) = t2=2!

Then we have

N t (k) =
� k e� �t tk

k!
which is a Poisson distribution with parameter �t , as desired!

Example 16.2 (Fishing). Bob catches �sh according to a PP(� = 0 :6=hr). If he catches at least one
�sh in the �rst two hours, he quits. Otherwise, he continues until he has caught his �rst �sh.

1. What is the probability that bob �shes for more than two hours?

2. What is the probability that Bob catches at least two �sh?

3. What is the expected number of �sh Bob catches?

4. What is the expected �shing time, given that he has been �shing for 4 hours already?

Answers:

1. P r [N2 = 0] = e� � �2 = e� 1:2

2. 1� Pr (N2 = 1) � Pr (N2 = 0) = 1 � e� 1:2 � 1:2e� 1:2

3. Total number of �sh caught = �sh caught in [0,2] + �sh caught in [2, 1 ]. Then we can use
linearity of expectation and we have

E[total �sh caught] = E[Pois(1:2)] + 1 � Pr [still �shing in (2 ; 1 )]

1:2 + e� 1:2

4. We of course use the memoryless property, and we get

4 + E[Expo(0:6)] = 4 +
1

0:6
= 5 :66hrs

16.1 Merging and Splitting

Merging:

Suppose we haveN1 is a PP(� 1) and N2 � PP(� 2). Then we have the following fact:

N = N1 + N2 � PP(� 1 + � 2)

This fact follows easily from the fact that the sum of two independent poisson random variables is still
poisson with their parameters added, which we have proven earlier in the semester (can be proven with
MGFs or with a convolution).

Splitting:
Suppose we haveN � PP(� ), and then we take each arrival and send it toN1 with probability p, and send
it to N2 with probability 1 � p. We do this independently for each arrival. Then here are some facts:

1. N1 � PP(�p )

2. N2 � PP(� (1 � p))

3. N1(t) and N2(t) are independent RVs.

These again follow from the proof of poisson random variable splitting we did in homework earlier in the
semester.
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Example 16.3. Suppose we have two lightbulbs have independetly and exponentially distributed
lifetimes Ta and Tb respectively, with parameters � a and � b respectively. What is the distribution of
Z = min (Ta ; Tb)?

Well, we can recall that this is simply an exponential RV with rate � a + � b (or can easily derive
this by examining the CDF). But a way cooler way is to notice that that Ta and Tb are the times of
the �rst arrivals of two independent Poisson Processes with rates� a and � b. The min(Ta ; Tb) is the
�rst arrival of the merged PP, which we know has rate� a + � b, so then we know that

min(Ta ; Tb) � Expo(� a + � b)

16.2 Erlang Distribution

Recall that we de�ned Tk = S1 + ::: + Sk to be the time of the kth arrival of the poisson process. We can
observe:

1. E [Tk ] =
P

E[Si ] = k
�

2. Var (Tk ) = k Var (Si ) = k
� 2

We would like to know the pdf of Tk . The distinctly uncool way to calculate this would be with a big
convolution. But we can do something easier:

f Tk (t)dt = Pr [k-1 arrivals in (0,t)] Pr (1 arrival in (t,t+dt))

=
e� �t (�t )k � 1

(k � 1)!
� �dt

=) f Tk (t) =
e� �t � k tk � 1

(k � 1)!

This is known as the kth -order Erlang Distribution .
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17 Lecture 17: CTMCs

Agenda:

1. Quick Recap of PPs

2. Random Incidence Paradox

3. CTMC's: Introduction

4. Rate Matrix and Stationary Distributions

17.1 Random Incidence Paradox (RIP)

Consider a Poisson process with rate� , and suppose it has been going on in�nitely long. The question we
would like to answer is: if I pick a random t � , what is the expected length of the interval in which it falls?

It is very tempting to say that, since each interarrival is Expo(� ), that then the expected length of the
interval is just the expectation of that exponential random variable, which is 1

� . Let's call L the length of
the interval in which t � falls. We claim then that L is distributed according to an Erlang-2(� ) distribution.
Why is this the case?

Lets say t � falls betweenTi and Ti +1 . Lets call U := Ti and V := Ti +1 . Then we have that

L = ( t � � U) + ( V � t � )

We have by the memorylessness property thatV � t � is distributed according to an exponential distribution!
Now what about t � � U? We have:

Pr (t � � U > x ) = Pr (more than x sec have elapsed since last arrival)

= Pr (no arrivals in [t � � x; t � ])

= Pr (N (x) = 0) = e� �x :

Now we note that this looks like 1� FX (� ) where X � Expo(� ) (and F is the CDF of X ), therefore t � � U
must be an exponential random variable as well. HenceL is the sum of two independent exponential random
variables and therefore an Erlang-2 distribution.

Remark 17.1. The key takeaway from the section above is that a Poisson process run backwards is
still a Poisson process with exponential interarrival times.

Remark 17.2. Here is some more intuition for RIP. Suppose the bus schedule is �xed deterministically,
a bus comes after 5 mins, then after 55 minutes, then after 5 minutes, then after 55 minutes, etc.
Then we have that the average interarrival time is of course 30 minutes. However, what if we just
randomly show up to the bus stop? Then we the expected length of the interval we arrive in is
actually:

(5=60) � 5 + (55=60) � 55 = 50:83

17.2 Continuous-Time Markov Chains (CTMCs)

Similar to a discrete time Markov Chain, we start with a countable set X of states. Then the process is
f X t : t � 0g, de�ned via the following:

1. One is given an initial prob distribution over X

2. a rate matrix Q where

(a) Q(i; j ) � 0 8i 6= j:

(b)
P

j Q(i; j ) = 0 :
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Example 17.3. We could have

Q =

2

4
� 4 3 1
0 � 2 2
1 1 � 2

3

5

(Note: This follows the convention in Walrand's book, not Bertsekas).

De�nition 17.4. A CTMC with initial distribution � and rate matrix Q is a processf X t ; t � 0g such
that Pr (X 0 = i ) = � (i ), and

Pr (X t + � = j jX t = i; X u ; u < t ) =

(
�Q (i; j ) + o(� ) i 6= j
1 + �Q (i; i ) + o(� ) i = j

The above de�nition follows the traditional Markov property we are used to (when � is small enough),
and note that

Pr (X t + � 6= i jX t = i ) = �
X

i 6= j

Q(i; j )

=) Pr (X t + � = i jX t = i ) = 1 � �
X

i 6= j

Q(i; j ) = 1 + �Q (i; i )

Where in the above I have dropped theo(� ) terms.

Example 17.5. Consider the Markov chain below:

1 2

3

3

1 21

1

Where

Q =

2

4
� 4 3 1
0 � 2 2
1 1 � 2

3

5

And suppose our initial � is � = (1 =3; 1=3; 1=3). Then we have:

Pr (X t + � = 3 jX t = 1) = �Q (1; 3)

We can set up the following jump chain:

and we de�ne qi = jQii j.
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18 Lecture 18: More on CTMCs

Agenda:

1. Review of CTMC de�nition and properties

2. Rate matrix Q and stationary distribution �

3. Examples

4. First Step Equations for CTMC

5. Simulating a CTMC using a DTMC

Recall that a CTMC is de�ned by a rate matrix Q where

Q(i; j ) � 0 8i 6= j
X

j

Q(i; j ) = 0

And by de�nition we have
Q(i; j ) � 0 8i 6= j

Q(i; i ) � 0

The holding time in state i , which is the amount of time we wait in state i before making a jump, is
� Expo(q(i )) where q(i ) = � Q(i; i )

Recall we also have the continuous analog of the Markov Property:

Pr (X t + � = j jX t = i; X u ; u < t ) =

(
�Q (i; j ) + o(� ) i 6= j
1 + �Q (i; i ) + o(� ) i = j

And in particular we have

Pr (X t + � = i jX t = i ) = 1 � �
X

i 6= j

Q(i; j ) = 1 � � (� Q(i; i )) = 1 � �q(i )

If the current state is i , the time to \jump" is Expo(q(i ).
Lets go back to the example we were looking at then end of last lecture:

Example 18.1. Consider the Markov chain below.

1 2

3

3

1 21

1

Where

Q =

2

4
� 4 3 1
0 � 2 2
1 1 � 2

3

5
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And suppose our initial � is � = (1 =3; 1=3; 1=3). Then we have:

Pr (X t + � = 3 jX t = 1) = �Q (1; 3)

We can setup the followingembedded DTMC:

1 2

3

3=4

1=4 11=2

1=2

This DTMC models the jumps of the CTMC, but potentially does not model how long we are
waiting in each state in the CTMC. We get these probabilities by remembering the properties of
exponential splitting. Then we have

Pr (X t + � = 3 jX t = 1) = (4 � )(1=4)

How did we get this? Well, we need to jump in time (0; � ), which happens roughly with probability q(i )� .
Then, when we jump, we need to jump to the correct statej , which happens with probability Q(i;j )

q( i ) . Both
of these things need to happen in order to transition to statej from state i , so we have

Pr (X t + � = j jX t = i ) = �q(i )
Q(i; j )

q(i )
= �Q (i; j )

Example 18.2 (B&T 7.14). Say we have a Normal state (1) and a test state (2) and a repair state
(3).

1 2

3

1

2:5

2:53

What is the stationary distribution of this Markov Chain? Recall that for discrete Markov Chains,
we needed to solve for� = �P . However, for a continuous time markov chain, we need to solve for

�Q = 0
X

i

� i = 1

This is known as the "Rate conservation principle" or "rate in = rate out" (can you see why?). Then
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we have

Q =

2

4
� 1 1 0
2:5 � 5 2:5
3 0 � 3

3

5

Writing out the equations, we have

� (1) � 1 = � (2)
5
2

+ � (3) � 3

Notice that the left hand side is the 
ow coming out of state 1, while the right hand side is the 
ow
going into state 1! For me, it is easier to remember this concept than to write out the equations by
just remembering the matrix formula. We can set up the rest of the equations and solve to �nd

� = (30=41; 6=41; 5=41)

Remark 18.3 (Poisson Processes are CTMCs). If we have a PP(� ), we can model it as a CTMC as
follows:

1 2 3 � � �

� � �

Example 18.4. We can consider the two state markov chain which transitions from state 0 to state
one with rate � , and from state 1 to state 0 with rate � . Then by the 
ow equations we have

� �� 0 = �� 1 � �� 1 = �� 0� 0 + � 1 = 1

We can solve these equations to �nd that

� 0 =
�

� + �
� 0 =

�
� + �

So when� = 1 and � = 2, we are "parked" in state 0 twice as much as we are parked in state 1.
However, the embedded DTMC has the stationary distribution (1=2; 1=2), no matter what � and �
are. Clearly, we need to do something di�erent if we want our DTMC to have the same stationary
distribution as the CTMC.

18.1 Hitting Times

Example 18.5. Consider 20 lightbulbs that have indep. lifetimes that are exponentially distributed
with rate 1 (month). How long before all the bulbs die out?
We can model this with 21 states, corresponding to the number of lightbulbs still alive. We transition
from state 20 to state 19 with rate 20 (min of 20 exponentials!), and from 19 to 18 with rate 19, and
so on. How long does it take for us to get to zero? We have to come up with�rst step equations ,
which are quite analogous to the ones we saw for DTMCs. The biggest di�erence is that we are not
transitioning after 1 time step now, we are transitioning on average after 1=q(i ) amount of time (the
mean of the exponential) if we are in statei . We can de�ne x i as the expected amount of time to hit

70



zero given you are in statem. We have then

x i =
1
i

+ x i � 1

This implies that

x20 =
1
20

+
1
19

+ � � � + 1 � 3:6

Example 18.6. Now assume the burnt out bulbs are replaced after an exponential amount of time
with mean 0:1 month (meaning � = 10). Now what is the expected amount of time until all our bulbs
have burnt out? Now our FSE looks like:

� (20) =
1
20

+ � (19)

and more generally for 1� m � 19:

� (m) =
1

m + 10
+

m
m + 10

� (m � 1) +
10

m + 10
� (m + 1)

and �nally � (0) = 0. Solving for these equations recursively yields

� (20) � 2488

18.2 Simulating a CTMC with a DTMC

Let's consider the same example as before.

1 2

3

1

2:5

2:53

where

Q =

2

4
� 1 1 0
2:5 � 5 2:5
3 0 � 3

3

5

We then de�ne � = max i q(i ) = 5. This is intuitively our "clock delay". We can form the DTMC by dividing
all the transition rates by � and adding self loops when necessary:
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1 2

3

4=5

2=5

1=5

1=2

1=23=5

We can verify that this � is the same for this DTMC as for the CTMC.
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19 Lecture 19: Random Graphs

Agenda:

1. Wrapup of CTMCs (simulating CTMC with DTMC)

2. Random Graphs

(a) intro, de�nition

(b) Erd•os-Renyi G(n; p) random graph model

(c) Threshold conditions for graph connectivity

19.1 recap of CTMCs

Why would we want to simulate a CTMC with a DTMC? For one, it's easier to implement and do on a
computer. Two key points about simulating CTMCs with DTMCs:

1. The jump or embedded chain has no self loops, and in general the stationary distribution of this
chain and the corresponding CTMC is not the same. Intuitively, this is because if we have di�erent
values ofq(i ) for each state i , then we are "waiting" longer at certain states, which is not re
ected in
the jump chain.

2. If we want the corresponding DTMC to have the same stationary distribution, we have to form a
DTMC by dividing transition by � = max i q(i ), and adding self loops where necessary. This e�ectively
adds in a waiting time to the corresponding DTMC. Here we can think of � = max i q(i ) as the clock
rate of the markov chain.

The stationary distribution remains the same in the second case because our new matrixP = I + Q=�.
We can verify that an eigenvalue ofQ is also an eigenvalue ofP, so therefore the stationary distributions
must be the same.

19.2 Random Graphs

Some motivation:

1. Graphs, and random graphs, are everywhere. They have applications to the behavior of social networks,
biological networks, recommendation systems (matrix completion), etc.

2. Modeling epidemics (very topical) involves random graphs.

De�nition 19.1 (Erd•os-Renyi (ER) Random Graphs). Given a positive integern and a probability value
p 2 (0; 1]. Then G(n; p) is a random graph which is undirected graph on n vertices such that each
of the

� n
2

�
edges are present independently and with probabilityp.

Intuitively, we are just drawing n vertices, and for each pair of vertices, we 
ip a biased coin (probp of
heads), and if it comes out heads, we draw an edge between these two vertices.

Erd•os and Renyi stated a number of results that are based on \thresholds" ofp needed for certainstructural
properties of the graph to emerge.

Example 19.2. 1. If p = 1
n 2 , then we see at least one edge with high probability.

2. if p = 1
n 3= 2 , then the �rst \3-node trees" (incomplete triangles) start to emerge.

3. if p = 1
n , then the �rst cycles begin emerging
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4. if p = 1
n , then the �rst \Giant Component" emerges. Speci�cally, if p = 1� �

n , then the largest
connected components are of sizeO(log n), but if p = 1+ �

n , then suddenly the size of the largest
component is of sizeO(n).

We will focus today on arguably the most important threshold for random graphs: the threshold for
connectivity .

Lemma 19.3. If p > log n
n , then our graph is connected w.h.p. Otherwise, ifp < log n

n then our graph
is not connected with high probability

Remark 19.4. We have that the probability of a particular �xed graph G0 with m edges appearing
is

Pr (G(n; p) = G0) =
� � n

2

�

m

�
pm (1 � p)(

n
2 ) � m

Question 1 : What is E[# edges in G]? We have that there are
� n

2

�
possible edges, each appearing with

probability p, so by linearity of expectations (after de�ning appropriate indicators), we have

E[# edges in G] = p
�

n
2

�

Question 2: If we pick an arbitrary vertex and let D be its degree, then what is the distribution of D?
What is the expected degree?
Answer: We have that D � Binom (n � 1; p), and therefore we have

Pr (D = d) =
�

n � 1
d

�
pd(1 � p)n � 1� d 8d 2 f 0; 1; :::; n � 1g

and E[D ] = p(n � 1).
Question 3: Suppose now thatpn = �

n for a constant � > 0. What is the approximate distribution of D
when n ! 1 , pn ! 0, and pn n ! � ?
Answer:

D � Poisson(� )

And we have

Pr (D = d) �
e� � � d

d!
Question 4: What is the probability q that a node is isolated?

Answer: q = (1 � p)n � 1

Theorem 19.5 (E-R '61). Let pn = � log n
n . Then

1. If � < 1, then
Pr (G(n; p) is connected) n !1����! 0

2. If � > 1, then
Pr (G(n; p) is connected) n !1����! 1

Remark 19.6. if pn = ln n + c
n for a constant c 2 R, then it can be shown that

Pr (G(n; p) is connected) n !1����! e� e� c

Before we begin the proof of the the theorem, we need this quick lemma:
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Lemma 19.7. If X is a non-negative integer valued RV, then

Pr (X = 0) �
Var (X )
E[X ]2

Proof.

Var (X ) = E[(X � E[X ])2] = Pr (X = 0) E[X ]2 + Pr (X = 1)[ E[X ] � 1]2 + Pr (X = 2)[ E[X ] � 2]2 + : : :

� Pr (X = 0) E[X ]2

=) Pr (X = 0) �
Var (X )
E[X ]2

:

Now we can do the proof of the theorem:

Proof. For (1), it is su�cient to show that there will be isolated nodes with high probability. This is actually
something stronger than we need, but we will prove it anyway. We would like to show

Pr (no isolated nodes) n !1����! 0

Let X be the number of isolated nodes in our graph. First, lets �nd E[X ]. We de�ne I i as the indicator
RV of the event that node i is isolated. Then we have that

E[X ] =
nX

i =1

E[I i ] =
nX

i =1

Pr (node i is isolated) = nq = n(1 � p)n � 1

Then we have that

ln E[X ] = ln n + ( n � 1) ln(1 � p) � ln n + ( n � 1)(� p) = ln n + ( n � 1)
� � ln n

n

Where in the second equality we have used the fact that via Taylor series expansion, for smallx, we have
ln(1 � x) � � x. Then we have �nally

ln E[X ] � ln n �
n � 1

n
� ln n � ln n(1 � � ) n !1����! 1

And we have that
E[X ] � e(ln n )(1 � � ) = n1� �

Note that we are not done yet. Just because the expectation of a RV goes to in�nity does not mean that
the probability that it is not zero goes to zero. Consider the RV

W =

(
0 w.p. 1 � 1

n

n2 w.p. 1
n

Then we can see thatE[W ] n !1����! 1 , but also the probability that W = 0 goes to one as n goes to in�nity.
To �nish the proof, we need to get a handle on the variance ofX , as well as use the lemma we proved above.
We have

Var (X ) = Var (
X

i

I i )

We note here that the our indicators are not independent, so we have to do some more work.

Var (X ) =
nX

i =1

Var (I i ) +
nX

j =1

X

k6= j

Cov (I j ; I k ) = n var(I 1) + n(n � 1) Cov (I 1; I 2)

75



Now, in order to continue, we need to �gure out what the covariance term is. We have

Cov (I 1; I 2) = E[I 1I 2] � E[I 1] E[I 2]

Here sinceI i is an indicator, E[I i ] is just equal to the probability that node i is isolated, andE[I 1I 2] is the
probability that both nodes one and two are isolated, so we have

Cov (I 1; I 2) = (1 � p)n � 1(1 � p)n � 2 � (1 � p)n � 1(1 � p)n � 1 =
q2

1 � p
� q2

Now we can plug this back into our original expression, and we �nd that

Var (X ) = nq(1 � q) + n(n � 1)
�

q2

1 � p
� q2

�
= nq(1 � q) + n(n � 1)

pq2

1 � p

Now, we use our lemma to upper bound the probability that X = 0:

Pr (X = 0) �
Var (X )
E[X ]2

=
nq(1 � q) + n(n � 1) pq2

1� p

n2q2

�
1 � q

nq
+

n � 1
n

p
1 � p

:

Now we are done, because1� q
nq

n !1����! 0 and p
1� p

n !1����! 0. So we have proven the �rst part of the theorem.

How do we prove the second part? Namely, we want to show that if� > 1, we want to show that

Pr (G not connected) n !1����! 0

We will give only a proof sketch here. The idea is that the \Graph is disconnected"� \there exists a set of
sizek (where 1 � k � n=2) such that there is no edge between this set and its complement". Next, we will
apply the union bound twice to get the result.

Pr (graph is not connected) = Pr (
n= 2[

k=1

(9set of sizek disconnected from everything))

�
n= 2X

k=1

�
n
k

�
Pr (a speci�c set of sizek is disconnected)

=
n= 2X

k=1

�
n
k

�
(1 � p)k (n � k ) :

We can show that this summation goes to zero asn goes to in�nity, but we omit the details here because it
gets a bit messy. The details can be found in the appendix of the class notes.
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